numpy


Namenumpy JSON
Version 1.12.0 PyPI version JSON
home_pagehttp://www.numpy.org
SummaryNumPy: array processing for numbers, strings, records, and objects.
upload_time2017-01-15 23:10:36
maintainer
docs_urlNone
authorNumPy Developers
requires_python
licenseBSD
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
Coveralis test coverage No Coveralis.
            NumPy is a general-purpose array-processing package designed to
efficiently manipulate large multi-dimensional arrays of arbitrary
records without sacrificing too much speed for small multi-dimensional
arrays.  NumPy is built on the Numeric code base and adds features
introduced by numarray as well as an extended C-API and the ability to
create arrays of arbitrary type which also makes NumPy suitable for
interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform,
basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted
to SSE2 instructions, so may not give optimal linear algebra performance for
your machine. See http://docs.scipy.org/doc/numpy/user/install.html for
alternatives.




            

Raw data

            {
    "maintainer": "", 
    "docs_url": null, 
    "requires_python": "", 
    "maintainer_email": "", 
    "cheesecake_code_kwalitee_id": null, 
    "keywords": "", 
    "upload_time": "2017-01-15 23:10:36", 
    "author": "NumPy Developers", 
    "home_page": "http://www.numpy.org", 
    "download_url": "http://sourceforge.net/projects/numpy/files/NumPy/", 
    "platform": "Windows", 
    "version": "1.12.0", 
    "cheesecake_documentation_id": null, 
    "description": "NumPy is a general-purpose array-processing package designed to\r\nefficiently manipulate large multi-dimensional arrays of arbitrary\r\nrecords without sacrificing too much speed for small multi-dimensional\r\narrays.  NumPy is built on the Numeric code base and adds features\r\nintroduced by numarray as well as an extended C-API and the ability to\r\ncreate arrays of arbitrary type which also makes NumPy suitable for\r\ninterfacing with general-purpose data-base applications.\r\n\r\nThere are also basic facilities for discrete fourier transform,\r\nbasic linear algebra and random number generation.\r\n\r\nAll numpy wheels distributed from pypi are BSD licensed.\r\n\r\nWindows wheels are linked against the ATLAS BLAS / LAPACK library, restricted\r\nto SSE2 instructions, so may not give optimal linear algebra performance for\r\nyour machine. See http://docs.scipy.org/doc/numpy/user/install.html for\r\nalternatives.\r\n\r\n\r\n\r\n", 
    "lcname": "numpy", 
    "bugtrack_url": "", 
    "github": false, 
    "name": "numpy", 
    "license": "BSD", 
    "summary": "NumPy: array processing for numbers, strings, records, and objects.", 
    "split_keywords": [], 
    "author_email": "numpy-discussion@scipy.org", 
    "urls": [
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:10:36", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/bb/7d/4a1c08dca6b162ad5b33d50767e0c1a50a7d04695a5354bab580a9f6fea1/numpy-1.12.0-cp27-cp27m-manylinux1_i686.whl", 
            "md5_digest": "cae3611aa666eef0597866dfc59a6671", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp27-cp27m-manylinux1_i686.whl", 
            "packagetype": "bdist_wheel", 
            "path": "bb/7d/4a1c08dca6b162ad5b33d50767e0c1a50a7d04695a5354bab580a9f6fea1/numpy-1.12.0-cp27-cp27m-manylinux1_i686.whl", 
            "size": 12405639
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:12:12", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/5b/a4/761dd4596da94d3ce438d93673fcd8053eb368400526223ab7e981547592/numpy-1.12.0-cp27-cp27m-manylinux1_x86_64.whl", 
            "md5_digest": "e6ac7b379bc53e3220fc9c0d8c85624d", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp27-cp27m-manylinux1_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "5b/a4/761dd4596da94d3ce438d93673fcd8053eb368400526223ab7e981547592/numpy-1.12.0-cp27-cp27m-manylinux1_x86_64.whl", 
            "size": 16498825
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:13:11", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/de/20/f2424af5c7075b39809297d23da29719b5d3cbcb726df737922ef29d9a5f/numpy-1.12.0-cp27-cp27mu-manylinux1_i686.whl", 
            "md5_digest": "40688215dc3020bece11f186df88c254", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp27-cp27mu-manylinux1_i686.whl", 
            "packagetype": "bdist_wheel", 
            "path": "de/20/f2424af5c7075b39809297d23da29719b5d3cbcb726df737922ef29d9a5f/numpy-1.12.0-cp27-cp27mu-manylinux1_i686.whl", 
            "size": 12404762
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T22:59:45", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/9c/35/e503033f81c4627fc6ba6f92185563e5e95988b5e4df50b83c6af5720bd5/numpy-1.12.0-cp27-none-win32.whl", 
            "md5_digest": "5ea683e61094e0f5297f527d75d35f8d", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp27-none-win32.whl", 
            "packagetype": "bdist_wheel", 
            "path": "9c/35/e503033f81c4627fc6ba6f92185563e5e95988b5e4df50b83c6af5720bd5/numpy-1.12.0-cp27-none-win32.whl", 
            "size": 6595193
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:00:24", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/90/e8/b5dde871d6ca99ef23dc68457bb7572e74d447fdd12f8c11f996120e8828/numpy-1.12.0-cp27-none-win_amd64.whl", 
            "md5_digest": "a0e2cf28701964ce32b27ce3d2d670d5", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp27-none-win_amd64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "90/e8/b5dde871d6ca99ef23dc68457bb7572e74d447fdd12f8c11f996120e8828/numpy-1.12.0-cp27-none-win_amd64.whl", 
            "size": 7504256
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:01:06", 
            "comment_text": "", 
            "python_version": "cp34", 
            "url": "https://pypi.python.org/packages/df/ed/9efaf13a5d78d3a73eea0cced3becddfa92051bed8dfc4d39464e392feb0/numpy-1.12.0-cp34-none-win32.whl", 
            "md5_digest": "f5e25075731cedfbf24c7db494003cfd", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp34-none-win32.whl", 
            "packagetype": "bdist_wheel", 
            "path": "df/ed/9efaf13a5d78d3a73eea0cced3becddfa92051bed8dfc4d39464e392feb0/numpy-1.12.0-cp34-none-win32.whl", 
            "size": 6605663
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:01:47", 
            "comment_text": "", 
            "python_version": "cp34", 
            "url": "https://pypi.python.org/packages/43/eb/96b7941c9c993e9e1c4ee5cdfabffc3817988b17969e510e4244ebfd2d48/numpy-1.12.0-cp34-none-win_amd64.whl", 
            "md5_digest": "e65e9cf4864d17f1e490bc5d5b88c587", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp34-none-win_amd64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "43/eb/96b7941c9c993e9e1c4ee5cdfabffc3817988b17969e510e4244ebfd2d48/numpy-1.12.0-cp34-none-win_amd64.whl", 
            "size": 7497254
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:02:25", 
            "comment_text": "", 
            "python_version": "cp35", 
            "url": "https://pypi.python.org/packages/ac/7d/125fbc2bd94d446b3e84a8a02b252b75032d7385552e8cda11db879dece4/numpy-1.12.0-cp35-none-win32.whl", 
            "md5_digest": "edb061429a0ed84787205a5f18266bcb", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp35-none-win32.whl", 
            "packagetype": "bdist_wheel", 
            "path": "ac/7d/125fbc2bd94d446b3e84a8a02b252b75032d7385552e8cda11db879dece4/numpy-1.12.0-cp35-none-win32.whl", 
            "size": 6734720
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:03:09", 
            "comment_text": "", 
            "python_version": "cp35", 
            "url": "https://pypi.python.org/packages/2b/89/c1e5b28880468870c7f395fcd383aac3893f7bdcc237266498633b20ed61/numpy-1.12.0-cp35-none-win_amd64.whl", 
            "md5_digest": "ce2c1303b7be932e216388ba2480f581", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp35-none-win_amd64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "2b/89/c1e5b28880468870c7f395fcd383aac3893f7bdcc237266498633b20ed61/numpy-1.12.0-cp35-none-win_amd64.whl", 
            "size": 7685268
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:03:44", 
            "comment_text": "", 
            "python_version": "cp36", 
            "url": "https://pypi.python.org/packages/d4/a6/55f85fa298a26b89d516833d8f83feb270ee9cfd8c6cd047b2170d725ee6/numpy-1.12.0-cp36-none-win32.whl", 
            "md5_digest": "8b660d969a04678ad21726580811e55d", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp36-none-win32.whl", 
            "packagetype": "bdist_wheel", 
            "path": "d4/a6/55f85fa298a26b89d516833d8f83feb270ee9cfd8c6cd047b2170d725ee6/numpy-1.12.0-cp36-none-win32.whl", 
            "size": 6743607
        }, 
        {
            "has_sig": true, 
            "upload_time": "2017-01-15T23:04:22", 
            "comment_text": "", 
            "python_version": "cp36", 
            "url": "https://pypi.python.org/packages/45/40/29bc3ccf91887e2e38b18d81adf847b062408a3fa8bdf7c4479c564e6275/numpy-1.12.0-cp36-none-win_amd64.whl", 
            "md5_digest": "3d29bf5c852b4eb81b127bbad001610e", 
            "downloads": 0, 
            "filename": "numpy-1.12.0-cp36-none-win_amd64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "45/40/29bc3ccf91887e2e38b18d81adf847b062408a3fa8bdf7c4479c564e6275/numpy-1.12.0-cp36-none-win_amd64.whl", 
            "size": 7694711
        }
    ], 
    "_id": null, 
    "cheesecake_installability_id": null
}