| Name | A2KA JSON |
| Version |
0.1.7
JSON |
| download |
| home_page | https://github.com/Dsadd4/NLSExplorer_1.0/ |
| Summary | Attention to Key Area, a plug and play interpretable network. |
| upload_time | 2024-08-17 12:04:15 |
| maintainer | None |
| docs_url | None |
| author | Yifan Li |
| requires_python | >=3.7 |
| license | None |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# A2KA
A2KA is a novel web architecture designed to
identify crucial areas by extracting biological information from the embedding space of large language models.
Make sure pytorch is installed firstly.
The github storage is: https://github.com/Dsadd4/NLSExplorer_1.0
## Installation
You can install A2KA via pip:
```bash
pip install A2KA
```
## Usage
A2KA
```python
from A2KA import A2KA
import torch
hidden_dimention = 512
#configure your A2KA sturcture
config = [8,8,32]
#If your datasize is significant large, extending the scale of the network may be a good choice.
#Such a config = 18*[64] means it has 18 layers and each layer has 64 basic attention units.
model =A2KA( hidden_dimention,config)
# tensor in a shape of (Batchsize,sequence_length, embedding dimension)
exampletensor = torch.randn(5,100,512)
prediction,layerattention = model(exampletensor)
print(prediction)
print(layerattention)
```
SCNLS (in linux system)
```python
from A2KA import SCNLS
#Example
sequence_for_analysis = ['MSSAKRRKK','LSSSSKVR','MTNLP']
kth_set = 3
max_gap = 3
processorsnumber = 2
result = SCNLS(sequence_for_analysis,kth_set,max_gap,processorsnumber)
print(result)
```
Raw data
{
"_id": null,
"home_page": "https://github.com/Dsadd4/NLSExplorer_1.0/",
"name": "A2KA",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": "Yifan Li",
"author_email": "2543179079@qq.com",
"download_url": "https://files.pythonhosted.org/packages/09/1e/189e1ec868548545717ec4fcd0e84d7c1e2e262a99f57aba1fc30eb8694b/A2KA-0.1.7.tar.gz",
"platform": null,
"description": "# A2KA\nA2KA is a novel web architecture designed to\nidentify crucial areas by extracting biological information from the embedding space of large language models.\nMake sure pytorch is installed firstly.\nThe github storage is: https://github.com/Dsadd4/NLSExplorer_1.0\n## Installation\n\nYou can install A2KA via pip:\n\n```bash\npip install A2KA\n```\n## Usage\nA2KA\n```python\nfrom A2KA import A2KA\nimport torch\nhidden_dimention = 512\n#configure your A2KA sturcture\nconfig = [8,8,32]\n#If your datasize is significant large, extending the scale of the network may be a good choice.\n#Such a config = 18*[64] means it has 18 layers and each layer has 64 basic attention units.\nmodel =A2KA( hidden_dimention,config)\n# tensor in a shape of (Batchsize,sequence_length, embedding dimension)\nexampletensor = torch.randn(5,100,512)\nprediction,layerattention = model(exampletensor)\nprint(prediction)\nprint(layerattention)\n```\n\nSCNLS (in linux system)\n```python\nfrom A2KA import SCNLS\n#Example \nsequence_for_analysis = ['MSSAKRRKK','LSSSSKVR','MTNLP']\nkth_set = 3\nmax_gap = 3\nprocessorsnumber = 2\nresult = SCNLS(sequence_for_analysis,kth_set,max_gap,processorsnumber)\nprint(result)\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Attention to Key Area, a plug and play interpretable network.",
"version": "0.1.7",
"project_urls": {
"Homepage": "https://github.com/Dsadd4/NLSExplorer_1.0/"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2c6045ae156a989307fc93d66e1ca95d007dd3379c2d9ffbfeabaf3df76c7798",
"md5": "5982f01fb14307d4eb7a5d91fd6367cd",
"sha256": "5a620a0214880d36bad8df5f3cbbbbebc9c4d5165f8c782b3988cb50e0a09bea"
},
"downloads": -1,
"filename": "A2KA-0.1.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5982f01fb14307d4eb7a5d91fd6367cd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 7720,
"upload_time": "2024-08-17T12:04:14",
"upload_time_iso_8601": "2024-08-17T12:04:14.073354Z",
"url": "https://files.pythonhosted.org/packages/2c/60/45ae156a989307fc93d66e1ca95d007dd3379c2d9ffbfeabaf3df76c7798/A2KA-0.1.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "091e189e1ec868548545717ec4fcd0e84d7c1e2e262a99f57aba1fc30eb8694b",
"md5": "8ad2227eb371460eb5a1aa0b18e5548b",
"sha256": "f0b6c125742b1e875c1d66d6500eb099d1af4b5b2e57a49b9828ea73db08c139"
},
"downloads": -1,
"filename": "A2KA-0.1.7.tar.gz",
"has_sig": false,
"md5_digest": "8ad2227eb371460eb5a1aa0b18e5548b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 7226,
"upload_time": "2024-08-17T12:04:15",
"upload_time_iso_8601": "2024-08-17T12:04:15.758559Z",
"url": "https://files.pythonhosted.org/packages/09/1e/189e1ec868548545717ec4fcd0e84d7c1e2e262a99f57aba1fc30eb8694b/A2KA-0.1.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-17 12:04:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Dsadd4",
"github_project": "NLSExplorer_1.0",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "a2ka"
}