A2KA


NameA2KA JSON
Version 0.1.7 PyPI version JSON
download
home_pagehttps://github.com/Dsadd4/NLSExplorer_1.0/
SummaryAttention to Key Area, a plug and play interpretable network.
upload_time2024-08-17 12:04:15
maintainerNone
docs_urlNone
authorYifan Li
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # A2KA
A2KA is a novel web architecture designed to
identify crucial areas by extracting biological information from the embedding space of large language models.
Make sure pytorch is installed firstly.
The github storage is: https://github.com/Dsadd4/NLSExplorer_1.0
## Installation

You can install A2KA via pip:

```bash
pip install A2KA
```
## Usage
A2KA
```python
from A2KA import A2KA
import torch
hidden_dimention = 512
#configure your A2KA sturcture
config = [8,8,32]
#If your datasize is significant large, extending the scale of the network may be a good choice.
#Such a config = 18*[64] means it has 18 layers and each layer has 64 basic attention units.
model =A2KA( hidden_dimention,config)
# tensor in a shape of (Batchsize,sequence_length, embedding dimension)
exampletensor = torch.randn(5,100,512)
prediction,layerattention = model(exampletensor)
print(prediction)
print(layerattention)
```

SCNLS (in linux system)
```python
from A2KA import SCNLS
#Example 
sequence_for_analysis = ['MSSAKRRKK','LSSSSKVR','MTNLP']
kth_set = 3
max_gap = 3
processorsnumber = 2
result = SCNLS(sequence_for_analysis,kth_set,max_gap,processorsnumber)
print(result)
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Dsadd4/NLSExplorer_1.0/",
    "name": "A2KA",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Yifan Li",
    "author_email": "2543179079@qq.com",
    "download_url": "https://files.pythonhosted.org/packages/09/1e/189e1ec868548545717ec4fcd0e84d7c1e2e262a99f57aba1fc30eb8694b/A2KA-0.1.7.tar.gz",
    "platform": null,
    "description": "# A2KA\nA2KA is a novel web architecture designed to\nidentify crucial areas by extracting biological information from the embedding space of large language models.\nMake sure pytorch is installed firstly.\nThe github storage is: https://github.com/Dsadd4/NLSExplorer_1.0\n## Installation\n\nYou can install A2KA via pip:\n\n```bash\npip install A2KA\n```\n## Usage\nA2KA\n```python\nfrom A2KA import A2KA\nimport torch\nhidden_dimention = 512\n#configure your A2KA sturcture\nconfig = [8,8,32]\n#If your datasize is significant large, extending the scale of the network may be a good choice.\n#Such a config = 18*[64] means it has 18 layers and each layer has 64 basic attention units.\nmodel =A2KA( hidden_dimention,config)\n# tensor in a shape of (Batchsize,sequence_length, embedding dimension)\nexampletensor = torch.randn(5,100,512)\nprediction,layerattention = model(exampletensor)\nprint(prediction)\nprint(layerattention)\n```\n\nSCNLS (in linux system)\n```python\nfrom A2KA import SCNLS\n#Example \nsequence_for_analysis = ['MSSAKRRKK','LSSSSKVR','MTNLP']\nkth_set = 3\nmax_gap = 3\nprocessorsnumber = 2\nresult = SCNLS(sequence_for_analysis,kth_set,max_gap,processorsnumber)\nprint(result)\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Attention to Key Area, a plug and play interpretable network.",
    "version": "0.1.7",
    "project_urls": {
        "Homepage": "https://github.com/Dsadd4/NLSExplorer_1.0/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2c6045ae156a989307fc93d66e1ca95d007dd3379c2d9ffbfeabaf3df76c7798",
                "md5": "5982f01fb14307d4eb7a5d91fd6367cd",
                "sha256": "5a620a0214880d36bad8df5f3cbbbbebc9c4d5165f8c782b3988cb50e0a09bea"
            },
            "downloads": -1,
            "filename": "A2KA-0.1.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5982f01fb14307d4eb7a5d91fd6367cd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 7720,
            "upload_time": "2024-08-17T12:04:14",
            "upload_time_iso_8601": "2024-08-17T12:04:14.073354Z",
            "url": "https://files.pythonhosted.org/packages/2c/60/45ae156a989307fc93d66e1ca95d007dd3379c2d9ffbfeabaf3df76c7798/A2KA-0.1.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "091e189e1ec868548545717ec4fcd0e84d7c1e2e262a99f57aba1fc30eb8694b",
                "md5": "8ad2227eb371460eb5a1aa0b18e5548b",
                "sha256": "f0b6c125742b1e875c1d66d6500eb099d1af4b5b2e57a49b9828ea73db08c139"
            },
            "downloads": -1,
            "filename": "A2KA-0.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "8ad2227eb371460eb5a1aa0b18e5548b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 7226,
            "upload_time": "2024-08-17T12:04:15",
            "upload_time_iso_8601": "2024-08-17T12:04:15.758559Z",
            "url": "https://files.pythonhosted.org/packages/09/1e/189e1ec868548545717ec4fcd0e84d7c1e2e262a99f57aba1fc30eb8694b/A2KA-0.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-17 12:04:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Dsadd4",
    "github_project": "NLSExplorer_1.0",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "a2ka"
}
        
Elapsed time: 0.31961s