Auriga


NameAuriga JSON
Version 1.1 PyPI version JSON
download
home_pagehttps://github.com/mkounkel/Auriga
SummaryA neural network for structure parameter determination
upload_time2024-01-07 04:35:55
maintainer
docs_urlNone
authorMarina Kounkel
requires_python>=3.6
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Auriga

Auriga neural net predicts age, extinction, and distance to stellar populations

## Installation:

```pip install auriga```
(requires Python3)

## Keywords:
```
positional arguments:
  tableIn               Input table with Gaia DR2 source ids and cluster ids

optional arguments:
  -h, --help            show this help message and exit
  --tutorial            Use included test.fits or test.csv files as inputs
  --tableOut TABLEOUT   Prefix of the csv file into which the cluster properties should be written, default tableIn-out
  --iters ITERS         Number of iterations of each cluster is passed through Auriga to generate the errors, default 10
  --localFlux           Download necessary flux from Gaia archive for all source ids, default True
  --saveFlux SAVEFLUX   If downloading flux, prefix of file where to save it, default empty
  --silent              Suppress print statements, default False
  --cluster CLUSTER     Column with cluster membership
  --source_id SOURCE_ID
                        Column with Gaia DR2 source id,
  --gaiaFluxErrors      If loading flux, whether uncertainties in Gaia bands have been converted from flux to magnitude, default True
  --g G                 If loading flux, column for G magnitude
  --bp BP               If loading flux, column for BP magnitude
  --rp RP               If loading flux, column for RP magnitude
  --j J                 If loading flux, column for J magnitude
  --h H                 If loading flux, column for H magnitude
  --k K                 If loading flux, column for K magnitude
  --parallax PARALLAX   If loading flux, column for parallax
  --eg EG               If loading flux, column for uncertainty in G magnitude
  --ebp EBP             If loading flux, column for uncertainty in BP magnitude
  --erp ERP             If loading flux, column for uncertainty in RP magnitude
  --ej EJ               If loading flux, column for uncertainty in J magnitude
  --eh EH               If loading flux, column for uncertainty in H magnitude
  --ek EK               If loading flux, column for uncertainty in K magnitude
  --eparallax EPARALLAX
                        If loading flux, column for uncertainty in parallax
  --gf GF               If uncertainties have not been converted to magnitudes, column for G flux
  --bpf BPF             If uncertainties have not been converted to magnitudes, column for BP flux
  --rpf RPF             If uncertainties have not been converted to magnitudes, column for RP flux
  --egf EGF             If uncertainties have not been converted to magnitudes, column for uncertainty in G flux
  --ebpf EBPF           If uncertainties have not been converted to magnitudes, column for uncertainty in BP flux
  --erpf ERPF           If uncertainties have not been converted to magnitudes, column for uncertainty in RP flux
  --memoryOnly          Store table only in memory without saving to disk
  --ver VER             Version of Gaia data to download, default DR3

```

## Examples:
Downloading photometry from the Gaia Archive for the sources defined in the fits table, saving the fluxes, and generating the outputs
```
auriga test.fits --tableOut test-out --saveFlux test --tutorial 
```

Using previously downloaded fluxes to generate predictions. 20 implementations of each cluster are generated instead of 10, to estimate the uncertainties in the cluster parameters
```
auriga test.csv --localFlux --iters=20 --tutorial
```

Using previously downloaded fluxes, defining all the necessary columns
```
auriga test.fits --localFlux --gaiaFluxErrors --g phot_g_mean_mag --bp phot_bp_mean_mag \
           --rp phot_rp_mean_mag --j j_m --h h_m --k ks_m --ej j_msigcom --eh h_msigcom \
           --ek ks_msigcom --eparallax parallax_error --tutorial --silent

```
Using from within a code, outside of a command line
```
from auriga.auriga import getClusterAge
t=Table.read('test.csv')
out=getClusterAge(t,localFlux=True)
out=getClusterAge('test.csv',tutorial=True,memoryOnly=True)
```

## Required packages:
* Astropy
* Astroquery
* Pytorch
* Pandas

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mkounkel/Auriga",
    "name": "Auriga",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "",
    "author": "Marina Kounkel",
    "author_email": "marina.kounkel@unf.edu",
    "download_url": "https://files.pythonhosted.org/packages/76/23/8232a2d49525d1ac84d3dbb2a63b4dee7c3ee48f1bbf935936f24e2d6244/Auriga-1.1.tar.gz",
    "platform": null,
    "description": "# Auriga\n\nAuriga neural net predicts age, extinction, and distance to stellar populations\n\n## Installation:\n\n```pip install auriga```\n(requires Python3)\n\n## Keywords:\n```\npositional arguments:\n  tableIn               Input table with Gaia DR2 source ids and cluster ids\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --tutorial            Use included test.fits or test.csv files as inputs\n  --tableOut TABLEOUT   Prefix of the csv file into which the cluster properties should be written, default tableIn-out\n  --iters ITERS         Number of iterations of each cluster is passed through Auriga to generate the errors, default 10\n  --localFlux           Download necessary flux from Gaia archive for all source ids, default True\n  --saveFlux SAVEFLUX   If downloading flux, prefix of file where to save it, default empty\n  --silent              Suppress print statements, default False\n  --cluster CLUSTER     Column with cluster membership\n  --source_id SOURCE_ID\n                        Column with Gaia DR2 source id,\n  --gaiaFluxErrors      If loading flux, whether uncertainties in Gaia bands have been converted from flux to magnitude, default True\n  --g G                 If loading flux, column for G magnitude\n  --bp BP               If loading flux, column for BP magnitude\n  --rp RP               If loading flux, column for RP magnitude\n  --j J                 If loading flux, column for J magnitude\n  --h H                 If loading flux, column for H magnitude\n  --k K                 If loading flux, column for K magnitude\n  --parallax PARALLAX   If loading flux, column for parallax\n  --eg EG               If loading flux, column for uncertainty in G magnitude\n  --ebp EBP             If loading flux, column for uncertainty in BP magnitude\n  --erp ERP             If loading flux, column for uncertainty in RP magnitude\n  --ej EJ               If loading flux, column for uncertainty in J magnitude\n  --eh EH               If loading flux, column for uncertainty in H magnitude\n  --ek EK               If loading flux, column for uncertainty in K magnitude\n  --eparallax EPARALLAX\n                        If loading flux, column for uncertainty in parallax\n  --gf GF               If uncertainties have not been converted to magnitudes, column for G flux\n  --bpf BPF             If uncertainties have not been converted to magnitudes, column for BP flux\n  --rpf RPF             If uncertainties have not been converted to magnitudes, column for RP flux\n  --egf EGF             If uncertainties have not been converted to magnitudes, column for uncertainty in G flux\n  --ebpf EBPF           If uncertainties have not been converted to magnitudes, column for uncertainty in BP flux\n  --erpf ERPF           If uncertainties have not been converted to magnitudes, column for uncertainty in RP flux\n  --memoryOnly          Store table only in memory without saving to disk\n  --ver VER             Version of Gaia data to download, default DR3\n\n```\n\n## Examples:\nDownloading photometry from the Gaia Archive for the sources defined in the fits table, saving the fluxes, and generating the outputs\n```\nauriga test.fits --tableOut test-out --saveFlux test --tutorial \n```\n\nUsing previously downloaded fluxes to generate predictions. 20 implementations of each cluster are generated instead of 10, to estimate the uncertainties in the cluster parameters\n```\nauriga test.csv --localFlux --iters=20 --tutorial\n```\n\nUsing previously downloaded fluxes, defining all the necessary columns\n```\nauriga test.fits --localFlux --gaiaFluxErrors --g phot_g_mean_mag --bp phot_bp_mean_mag \\\n           --rp phot_rp_mean_mag --j j_m --h h_m --k ks_m --ej j_msigcom --eh h_msigcom \\\n           --ek ks_msigcom --eparallax parallax_error --tutorial --silent\n\n```\nUsing from within a code, outside of a command line\n```\nfrom auriga.auriga import getClusterAge\nt=Table.read('test.csv')\nout=getClusterAge(t,localFlux=True)\nout=getClusterAge('test.csv',tutorial=True,memoryOnly=True)\n```\n\n## Required packages:\n* Astropy\n* Astroquery\n* Pytorch\n* Pandas\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A neural network for structure parameter determination",
    "version": "1.1",
    "project_urls": {
        "Homepage": "https://github.com/mkounkel/Auriga"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e46135018f5695cb4bf6baf9496cc0aa8741568f4822c815214de6ae7db6ecf0",
                "md5": "26a81abb7d336297684dc675a8acda93",
                "sha256": "f348fab1d35398210de4996c277e5ea4e443eb0bbccf880fb9010b5520b6ecc2"
            },
            "downloads": -1,
            "filename": "Auriga-1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "26a81abb7d336297684dc675a8acda93",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 2677436,
            "upload_time": "2024-01-07T04:35:44",
            "upload_time_iso_8601": "2024-01-07T04:35:44.174183Z",
            "url": "https://files.pythonhosted.org/packages/e4/61/35018f5695cb4bf6baf9496cc0aa8741568f4822c815214de6ae7db6ecf0/Auriga-1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "76238232a2d49525d1ac84d3dbb2a63b4dee7c3ee48f1bbf935936f24e2d6244",
                "md5": "e75d1f086eabae45343eb593b48f1eda",
                "sha256": "853eb962bd54f7c07a0e524a273d3c40dca537513b293dbb6b6f7e58394c969d"
            },
            "downloads": -1,
            "filename": "Auriga-1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "e75d1f086eabae45343eb593b48f1eda",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 2679900,
            "upload_time": "2024-01-07T04:35:55",
            "upload_time_iso_8601": "2024-01-07T04:35:55.256526Z",
            "url": "https://files.pythonhosted.org/packages/76/23/8232a2d49525d1ac84d3dbb2a63b4dee7c3ee48f1bbf935936f24e2d6244/Auriga-1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-07 04:35:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mkounkel",
    "github_project": "Auriga",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "auriga"
}
        
Elapsed time: 0.16711s