| Name | Auriga JSON |
| Version |
1.1
JSON |
| download |
| home_page | https://github.com/mkounkel/Auriga |
| Summary | A neural network for structure parameter determination |
| upload_time | 2024-01-07 04:35:55 |
| maintainer | |
| docs_url | None |
| author | Marina Kounkel |
| requires_python | >=3.6 |
| license | |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# Auriga
Auriga neural net predicts age, extinction, and distance to stellar populations
## Installation:
```pip install auriga```
(requires Python3)
## Keywords:
```
positional arguments:
tableIn Input table with Gaia DR2 source ids and cluster ids
optional arguments:
-h, --help show this help message and exit
--tutorial Use included test.fits or test.csv files as inputs
--tableOut TABLEOUT Prefix of the csv file into which the cluster properties should be written, default tableIn-out
--iters ITERS Number of iterations of each cluster is passed through Auriga to generate the errors, default 10
--localFlux Download necessary flux from Gaia archive for all source ids, default True
--saveFlux SAVEFLUX If downloading flux, prefix of file where to save it, default empty
--silent Suppress print statements, default False
--cluster CLUSTER Column with cluster membership
--source_id SOURCE_ID
Column with Gaia DR2 source id,
--gaiaFluxErrors If loading flux, whether uncertainties in Gaia bands have been converted from flux to magnitude, default True
--g G If loading flux, column for G magnitude
--bp BP If loading flux, column for BP magnitude
--rp RP If loading flux, column for RP magnitude
--j J If loading flux, column for J magnitude
--h H If loading flux, column for H magnitude
--k K If loading flux, column for K magnitude
--parallax PARALLAX If loading flux, column for parallax
--eg EG If loading flux, column for uncertainty in G magnitude
--ebp EBP If loading flux, column for uncertainty in BP magnitude
--erp ERP If loading flux, column for uncertainty in RP magnitude
--ej EJ If loading flux, column for uncertainty in J magnitude
--eh EH If loading flux, column for uncertainty in H magnitude
--ek EK If loading flux, column for uncertainty in K magnitude
--eparallax EPARALLAX
If loading flux, column for uncertainty in parallax
--gf GF If uncertainties have not been converted to magnitudes, column for G flux
--bpf BPF If uncertainties have not been converted to magnitudes, column for BP flux
--rpf RPF If uncertainties have not been converted to magnitudes, column for RP flux
--egf EGF If uncertainties have not been converted to magnitudes, column for uncertainty in G flux
--ebpf EBPF If uncertainties have not been converted to magnitudes, column for uncertainty in BP flux
--erpf ERPF If uncertainties have not been converted to magnitudes, column for uncertainty in RP flux
--memoryOnly Store table only in memory without saving to disk
--ver VER Version of Gaia data to download, default DR3
```
## Examples:
Downloading photometry from the Gaia Archive for the sources defined in the fits table, saving the fluxes, and generating the outputs
```
auriga test.fits --tableOut test-out --saveFlux test --tutorial
```
Using previously downloaded fluxes to generate predictions. 20 implementations of each cluster are generated instead of 10, to estimate the uncertainties in the cluster parameters
```
auriga test.csv --localFlux --iters=20 --tutorial
```
Using previously downloaded fluxes, defining all the necessary columns
```
auriga test.fits --localFlux --gaiaFluxErrors --g phot_g_mean_mag --bp phot_bp_mean_mag \
--rp phot_rp_mean_mag --j j_m --h h_m --k ks_m --ej j_msigcom --eh h_msigcom \
--ek ks_msigcom --eparallax parallax_error --tutorial --silent
```
Using from within a code, outside of a command line
```
from auriga.auriga import getClusterAge
t=Table.read('test.csv')
out=getClusterAge(t,localFlux=True)
out=getClusterAge('test.csv',tutorial=True,memoryOnly=True)
```
## Required packages:
* Astropy
* Astroquery
* Pytorch
* Pandas
Raw data
{
"_id": null,
"home_page": "https://github.com/mkounkel/Auriga",
"name": "Auriga",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "",
"author": "Marina Kounkel",
"author_email": "marina.kounkel@unf.edu",
"download_url": "https://files.pythonhosted.org/packages/76/23/8232a2d49525d1ac84d3dbb2a63b4dee7c3ee48f1bbf935936f24e2d6244/Auriga-1.1.tar.gz",
"platform": null,
"description": "# Auriga\n\nAuriga neural net predicts age, extinction, and distance to stellar populations\n\n## Installation:\n\n```pip install auriga```\n(requires Python3)\n\n## Keywords:\n```\npositional arguments:\n tableIn Input table with Gaia DR2 source ids and cluster ids\n\noptional arguments:\n -h, --help show this help message and exit\n --tutorial Use included test.fits or test.csv files as inputs\n --tableOut TABLEOUT Prefix of the csv file into which the cluster properties should be written, default tableIn-out\n --iters ITERS Number of iterations of each cluster is passed through Auriga to generate the errors, default 10\n --localFlux Download necessary flux from Gaia archive for all source ids, default True\n --saveFlux SAVEFLUX If downloading flux, prefix of file where to save it, default empty\n --silent Suppress print statements, default False\n --cluster CLUSTER Column with cluster membership\n --source_id SOURCE_ID\n Column with Gaia DR2 source id,\n --gaiaFluxErrors If loading flux, whether uncertainties in Gaia bands have been converted from flux to magnitude, default True\n --g G If loading flux, column for G magnitude\n --bp BP If loading flux, column for BP magnitude\n --rp RP If loading flux, column for RP magnitude\n --j J If loading flux, column for J magnitude\n --h H If loading flux, column for H magnitude\n --k K If loading flux, column for K magnitude\n --parallax PARALLAX If loading flux, column for parallax\n --eg EG If loading flux, column for uncertainty in G magnitude\n --ebp EBP If loading flux, column for uncertainty in BP magnitude\n --erp ERP If loading flux, column for uncertainty in RP magnitude\n --ej EJ If loading flux, column for uncertainty in J magnitude\n --eh EH If loading flux, column for uncertainty in H magnitude\n --ek EK If loading flux, column for uncertainty in K magnitude\n --eparallax EPARALLAX\n If loading flux, column for uncertainty in parallax\n --gf GF If uncertainties have not been converted to magnitudes, column for G flux\n --bpf BPF If uncertainties have not been converted to magnitudes, column for BP flux\n --rpf RPF If uncertainties have not been converted to magnitudes, column for RP flux\n --egf EGF If uncertainties have not been converted to magnitudes, column for uncertainty in G flux\n --ebpf EBPF If uncertainties have not been converted to magnitudes, column for uncertainty in BP flux\n --erpf ERPF If uncertainties have not been converted to magnitudes, column for uncertainty in RP flux\n --memoryOnly Store table only in memory without saving to disk\n --ver VER Version of Gaia data to download, default DR3\n\n```\n\n## Examples:\nDownloading photometry from the Gaia Archive for the sources defined in the fits table, saving the fluxes, and generating the outputs\n```\nauriga test.fits --tableOut test-out --saveFlux test --tutorial \n```\n\nUsing previously downloaded fluxes to generate predictions. 20 implementations of each cluster are generated instead of 10, to estimate the uncertainties in the cluster parameters\n```\nauriga test.csv --localFlux --iters=20 --tutorial\n```\n\nUsing previously downloaded fluxes, defining all the necessary columns\n```\nauriga test.fits --localFlux --gaiaFluxErrors --g phot_g_mean_mag --bp phot_bp_mean_mag \\\n --rp phot_rp_mean_mag --j j_m --h h_m --k ks_m --ej j_msigcom --eh h_msigcom \\\n --ek ks_msigcom --eparallax parallax_error --tutorial --silent\n\n```\nUsing from within a code, outside of a command line\n```\nfrom auriga.auriga import getClusterAge\nt=Table.read('test.csv')\nout=getClusterAge(t,localFlux=True)\nout=getClusterAge('test.csv',tutorial=True,memoryOnly=True)\n```\n\n## Required packages:\n* Astropy\n* Astroquery\n* Pytorch\n* Pandas\n",
"bugtrack_url": null,
"license": "",
"summary": "A neural network for structure parameter determination",
"version": "1.1",
"project_urls": {
"Homepage": "https://github.com/mkounkel/Auriga"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e46135018f5695cb4bf6baf9496cc0aa8741568f4822c815214de6ae7db6ecf0",
"md5": "26a81abb7d336297684dc675a8acda93",
"sha256": "f348fab1d35398210de4996c277e5ea4e443eb0bbccf880fb9010b5520b6ecc2"
},
"downloads": -1,
"filename": "Auriga-1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "26a81abb7d336297684dc675a8acda93",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 2677436,
"upload_time": "2024-01-07T04:35:44",
"upload_time_iso_8601": "2024-01-07T04:35:44.174183Z",
"url": "https://files.pythonhosted.org/packages/e4/61/35018f5695cb4bf6baf9496cc0aa8741568f4822c815214de6ae7db6ecf0/Auriga-1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "76238232a2d49525d1ac84d3dbb2a63b4dee7c3ee48f1bbf935936f24e2d6244",
"md5": "e75d1f086eabae45343eb593b48f1eda",
"sha256": "853eb962bd54f7c07a0e524a273d3c40dca537513b293dbb6b6f7e58394c969d"
},
"downloads": -1,
"filename": "Auriga-1.1.tar.gz",
"has_sig": false,
"md5_digest": "e75d1f086eabae45343eb593b48f1eda",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 2679900,
"upload_time": "2024-01-07T04:35:55",
"upload_time_iso_8601": "2024-01-07T04:35:55.256526Z",
"url": "https://files.pythonhosted.org/packages/76/23/8232a2d49525d1ac84d3dbb2a63b4dee7c3ee48f1bbf935936f24e2d6244/Auriga-1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-07 04:35:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mkounkel",
"github_project": "Auriga",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "auriga"
}