DeepACSA


NameDeepACSA JSON
Version 0.3.1 PyPI version JSON
download
home_page
SummaryAutomatic analysis of transversal muscle ultrasonography images
upload_time2023-10-08 18:46:49
maintainer
docs_urlNone
author
requires_python>=3.9
license
keywords
VCS
bugtrack_url
requirements jupyter Keras matplotlib numpy opencv-contrib-python pandas Pillow scikit-image scikit-learn tensorflow tqdm openpyxl h5py
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DeepACSA
*Automatic analysis of human lower limb ultrasonography images*

DeepACSA is an open-source tool to evaluate the anatomical cross-sectional area of muscles in ultrasound images using deep learning.
More information about the installtion and usage of DeepACSA can be found in the online [documentation](https://deepacsa.readthedocs.io/en/latest/index.html). You can find information about contributing, issues and bug reports there as well.
If you find this work useful, please remember to cite the corresponding [paper](https://journals.lww.com/acsm-msse/Abstract/9900/DeepACSA__Automatic_Segmentation_of.87.aspx), where more information about the model architecture and performance can be found as well. 

## Quickstart

To quickly start the DeepACSA either open the executable or type 

``python -m Deep_ACSA``

in your prompt once the package was installed and the DeepACSA environment activated.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "DeepACSA",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "",
    "author": "",
    "author_email": "Paul Ritsche <paul.ritsche@unibas.ch>",
    "download_url": "https://files.pythonhosted.org/packages/0b/15/ee38c9656e4383092777beee0dadcbcf491a46f94cb16dc8162f8e458ae6/deepacsa-0.3.1.tar.gz",
    "platform": null,
    "description": "# DeepACSA\n*Automatic analysis of human lower limb ultrasonography images*\n\nDeepACSA is an open-source tool to evaluate the anatomical cross-sectional area of muscles in ultrasound images using deep learning.\nMore information about the installtion and usage of DeepACSA can be found in the online [documentation](https://deepacsa.readthedocs.io/en/latest/index.html). You can find information about contributing, issues and bug reports there as well.\nIf you find this work useful, please remember to cite the corresponding [paper](https://journals.lww.com/acsm-msse/Abstract/9900/DeepACSA__Automatic_Segmentation_of.87.aspx), where more information about the model architecture and performance can be found as well. \n\n## Quickstart\n\nTo quickly start the DeepACSA either open the executable or type \n\n``python -m Deep_ACSA``\n\nin your prompt once the package was installed and the DeepACSA environment activated.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Automatic analysis of transversal muscle ultrasonography images",
    "version": "0.3.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/PaulRitsche/DeepACSA/issues",
        "Homepage": "https://github.com/PaulRitsche/DeepACSA"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "69eafc5febd083abbcf455c75f2917f8e5fae59f9e868055f1bcd6c664ffb12b",
                "md5": "d00aed09c5d67cde183441e78337b112",
                "sha256": "68ca563007681750cbcdf20cf3aef0deed4f55f164049e57705afb0ec55629a1"
            },
            "downloads": -1,
            "filename": "deepacsa-0.3.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d00aed09c5d67cde183441e78337b112",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 50848,
            "upload_time": "2023-10-08T18:46:47",
            "upload_time_iso_8601": "2023-10-08T18:46:47.236798Z",
            "url": "https://files.pythonhosted.org/packages/69/ea/fc5febd083abbcf455c75f2917f8e5fae59f9e868055f1bcd6c664ffb12b/deepacsa-0.3.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0b15ee38c9656e4383092777beee0dadcbcf491a46f94cb16dc8162f8e458ae6",
                "md5": "7fb9e6451fdc5e1b5b64cb990e31face",
                "sha256": "161a2f42652a077e18f796691eae7747b4318c197a5ce7b28c676c9a4ffdbe5e"
            },
            "downloads": -1,
            "filename": "deepacsa-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7fb9e6451fdc5e1b5b64cb990e31face",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 81273,
            "upload_time": "2023-10-08T18:46:49",
            "upload_time_iso_8601": "2023-10-08T18:46:49.237398Z",
            "url": "https://files.pythonhosted.org/packages/0b/15/ee38c9656e4383092777beee0dadcbcf491a46f94cb16dc8162f8e458ae6/deepacsa-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-08 18:46:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PaulRitsche",
    "github_project": "DeepACSA",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "jupyter",
            "specs": [
                [
                    "==",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "Keras",
            "specs": [
                [
                    "==",
                    "2.9.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.4.3"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.21.2"
                ]
            ]
        },
        {
            "name": "opencv-contrib-python",
            "specs": [
                [
                    "==",
                    "4.5.3.56"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "1.3.3"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    "==",
                    "8.3.2"
                ]
            ]
        },
        {
            "name": "scikit-image",
            "specs": [
                [
                    "==",
                    "0.18.3"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "0.24.2"
                ]
            ]
        },
        {
            "name": "tensorflow",
            "specs": [
                [
                    "==",
                    "2.9.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "==",
                    "4.62.3"
                ]
            ]
        },
        {
            "name": "openpyxl",
            "specs": [
                [
                    "==",
                    "3.0.9"
                ]
            ]
        },
        {
            "name": "h5py",
            "specs": [
                [
                    "==",
                    "3.4.0"
                ]
            ]
        }
    ],
    "lcname": "deepacsa"
}
        
Elapsed time: 0.13188s