DistributionalPrincipalAutoencoder


NameDistributionalPrincipalAutoencoder JSON
Version 0.0.0.dev0 PyPI version JSON
download
home_pagehttps://github.com/xwshen51/DistributionalPrincipalAutoencoder
SummaryDistributional Principal Autoencoder
upload_time2024-04-20 12:57:04
maintainerNone
docs_urlNone
authorXinwei Shen and Nicolai Meinshausen
requires_pythonNone
licenseBSD 3-Clause License
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Distributional Principal Autoencoder

Distributional Principal Autoencoder (DPA) is a nonlinear dimension reduction method proposed in the paper "[*Distributional Principal Autoencoders*]()" by Xinwei Shen and Nicolai Meinshausen. This directory contains the Python implementation of DPA.


## Installation
The latest release of the Python package can be installed through pip:
```sh
pip install DistributionalPrincipalAutoencoder
```

The development version can be installed from github:

```sh
pip install -e "git+https://github.com/xwshen51/DistributionalPrincipalAutoencoder" 
```


## Usage Example

See [this tutorial](https://github.com/xwshen51/DistributionalPrincipalAutoencoder/blob/main/examples/scurve.ipynb) for an example on S-curve.


## Contact information
If you meet any problems with the code, please submit an issue or contact [Xinwei Shen](mailto:xinwei.shen@stat.math.ethz.ch).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/xwshen51/DistributionalPrincipalAutoencoder",
    "name": "DistributionalPrincipalAutoencoder",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Xinwei Shen and Nicolai Meinshausen",
    "author_email": "xinwei.shen@stat.math.ethz.ch",
    "download_url": "https://files.pythonhosted.org/packages/0f/eb/5167b590b5a2504c240f8bb64b6d664281e5dc49f5015b234d056d0f8365/DistributionalPrincipalAutoencoder-0.0.0.dev0.tar.gz",
    "platform": null,
    "description": "# Distributional Principal Autoencoder\n\nDistributional Principal Autoencoder (DPA) is a nonlinear dimension reduction method proposed in the paper \"[*Distributional Principal Autoencoders*]()\" by Xinwei Shen and Nicolai Meinshausen. This directory contains the Python implementation of DPA.\n\n\n## Installation\nThe latest release of the Python package can be installed through pip:\n```sh\npip install DistributionalPrincipalAutoencoder\n```\n\nThe development version can be installed from github:\n\n```sh\npip install -e \"git+https://github.com/xwshen51/DistributionalPrincipalAutoencoder\" \n```\n\n\n## Usage Example\n\nSee [this tutorial](https://github.com/xwshen51/DistributionalPrincipalAutoencoder/blob/main/examples/scurve.ipynb) for an example on S-curve.\n\n\n## Contact information\nIf you meet any problems with the code, please submit an issue or contact [Xinwei Shen](mailto:xinwei.shen@stat.math.ethz.ch).\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause License",
    "summary": "Distributional Principal Autoencoder",
    "version": "0.0.0.dev0",
    "project_urls": {
        "Homepage": "https://github.com/xwshen51/DistributionalPrincipalAutoencoder"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "99a52be424fed970315fac357af69fcb1e436d56028a17f98b34884580694a5a",
                "md5": "cde4c58e14ba23194638eb810d562c70",
                "sha256": "8ed804e5080bb9ea26c1add8033ebfa55bb04ec842a0d2018f5516eec7a46f66"
            },
            "downloads": -1,
            "filename": "DistributionalPrincipalAutoencoder-0.0.0.dev0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cde4c58e14ba23194638eb810d562c70",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 11337,
            "upload_time": "2024-04-20T12:57:03",
            "upload_time_iso_8601": "2024-04-20T12:57:03.374484Z",
            "url": "https://files.pythonhosted.org/packages/99/a5/2be424fed970315fac357af69fcb1e436d56028a17f98b34884580694a5a/DistributionalPrincipalAutoencoder-0.0.0.dev0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0feb5167b590b5a2504c240f8bb64b6d664281e5dc49f5015b234d056d0f8365",
                "md5": "09aebff920286b98c2e6579c6674c130",
                "sha256": "10c4e0bcd29c22e2c37ab27ca428867d278dcc9795b0ed5ad19a9829b391593d"
            },
            "downloads": -1,
            "filename": "DistributionalPrincipalAutoencoder-0.0.0.dev0.tar.gz",
            "has_sig": false,
            "md5_digest": "09aebff920286b98c2e6579c6674c130",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10058,
            "upload_time": "2024-04-20T12:57:04",
            "upload_time_iso_8601": "2024-04-20T12:57:04.586288Z",
            "url": "https://files.pythonhosted.org/packages/0f/eb/5167b590b5a2504c240f8bb64b6d664281e5dc49f5015b234d056d0f8365/DistributionalPrincipalAutoencoder-0.0.0.dev0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-20 12:57:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "xwshen51",
    "github_project": "DistributionalPrincipalAutoencoder",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "distributionalprincipalautoencoder"
}
        
Elapsed time: 0.28445s