LearnFetch


NameLearnFetch JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/SaideOmaer1240/LearnFetch.git
SummaryUma biblioteca para buscar e extrair dados do site 'Toda Matéria'.
upload_time2024-08-18 08:41:23
maintainerNone
docs_urlNone
authorSaíde Omar Saíde
requires_python>=3.12.3
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
             
# LearnFetch

**LearnFetch** is a Python library designed to search and extract data from the 'Toda Materia' website. It is useful for accessing information from articles and educational content programmatically.

## Installation

To install LearnFetch, use `pip`. Make sure you have Python 3.12.3 or higher installed.
```python
pip install LearnFetch
```
## Usage

### Importing the Library

To get started with the library, import the `Pesquisador` class:

```python
from learnfetch import Pesquisador
```

### Creating an Instance and Performing a Search

Create an instance of the `Pesquisador` class and use the `get_response` method to perform searches:

```python
# Creating an instance of the Pesquisador class
researcher = Pesquisador()

# Performing a search
results = researcher.get_response("Photosynthesis")

# Displaying the results
print(results)
```

### Package Structure

The package structure includes:

- **`learnfetch/`**: Directory containing the package with the `pesquisador.py` module.
  - **`__init__.py`**: File that makes the directory a Python package.
  - **`pesquisador.py`**: Contains the `Pesquisador` class with methods for searching and extracting data.

- **`tests/`**: Directory for unit tests.
  - **`__init__.py`**: File that makes the directory a Python package.
  - **`test_pesquisador.py`**: File containing tests for the `Pesquisador` class.

## Complete Example

Here is a complete example of using the library:

```python
from learnfetch import Pesquisador

# Criando uma instância da classe Pesquisador
pesquisador = Pesquisador()

# Realizando uma busca
resultados = pesquisador.get_response("Redes neurais")

# Pegando um determinado dicionário da lista (por exemplo, o segundo)
if len(resultados) > 1:
        segundo_dicionario = resultados[1] 

        # Pegando um valor específico dentro de um dicionário
        conteudo = segundo_dicionario.get("content")
        print("Conteudo do Segundo Dicionário:")
        print(conteudo)
```
# Another
```python
    from learnfetch import Pesquisador
    # O uso de docx é opcional, estou usando somente para desmostrar umas das utilidades da biblioteca
    from docx import Document

    # Criar uma instância da classe Pesquisador
    researcher = Pesquisador()

    # Realizar uma busca
    termo_de_busca = "Fotossíntese"
    resultados = researcher.get_response(termo_de_busca)

    # Função para criar uma ficha de leitura para cada item
    def adicionar_ficha_ao_documento(doc, titulo, conteudo):
        doc.add_heading('Ficha de Leitura', level=1)
        doc.add_heading('Título:', level=2)
        doc.add_paragraph(titulo)
        doc.add_heading('Resumo:', level=2)
        doc.add_paragraph(conteudo)
        doc.add_heading('Comentários:', level=2)
        doc.add_paragraph('Adicione aqui suas observações pessoais.')
        doc.add_heading('Questões levantadas:', level=2)
        doc.add_paragraph('Liste aqui as questões ou dúvidas surgidas durante a leitura.')
        doc.add_paragraph("\n" + "="*50 + "\n")

    # Criar um documento Word
    documento = Document()

    # Verificar se a chave 'results' está presente no dicionário retornado
    if resultados:
        # Iterar sobre cada item na lista de resultados
        for item in resultados:
            titulo = item.get('title', 'Título não encontrado')
            conteudo = item.get('content', 'Conteúdo não encontrado')
            adicionar_ficha_ao_documento(documento, titulo, conteudo)
    else:
        print("Nenhum resultado encontrado.")

    # Salvar o documento
    nome_arquivo = f'ficha sobre {termo_de_busca}.docx'
    documento.save(nome_arquivo)
    print(f"As fichas de leitura foram salvas no arquivo {nome_arquivo}.")
```
## Contributing

If you would like to contribute to the project, feel free to open an issue or submit a pull request on the [GitHub repository](https://github.com/SaideOmaer1240/LearnFetch).

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Contact

For any questions or suggestions, you can reach out to:

- **Author**: Saide Omar Saide
- **Email**: saideomarsaideleon@gmail.com
 

### Explanation of Sections:

1. **Introduction**: Describes the purpose of the library.
2. **Installation**: Instructions for installing the library using pip.
3. **Usage**: Examples of how to import, create an instance, and use the library.
4. **Package Structure**: Explains the structure of the package directories and files.
5. **Complete Example**: A detailed example of how to use the library.
6. **Contributing**: Information on how to contribute to the project.
7. **License**: Details about the project license.
8. **Contact**: Contact information for support and suggestions.

Make sure to adjust the content as needed to reflect the specifics of your project.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SaideOmaer1240/LearnFetch.git",
    "name": "LearnFetch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12.3",
    "maintainer_email": null,
    "keywords": null,
    "author": "Sa\u00edde Omar Sa\u00edde",
    "author_email": "saideomarsaideleon@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/61/63/5df47de5c8b9ab5ba11ecd58d443eeeb45c1fd917570dc742eca6fe5071f/learnfetch-1.0.1.tar.gz",
    "platform": null,
    "description": " \r\n# LearnFetch\r\n\r\n**LearnFetch** is a Python library designed to search and extract data from the 'Toda Materia' website. It is useful for accessing information from articles and educational content programmatically.\r\n\r\n## Installation\r\n\r\nTo install LearnFetch, use `pip`. Make sure you have Python 3.12.3 or higher installed.\r\n```python\r\npip install LearnFetch\r\n```\r\n## Usage\r\n\r\n### Importing the Library\r\n\r\nTo get started with the library, import the `Pesquisador` class:\r\n\r\n```python\r\nfrom learnfetch import Pesquisador\r\n```\r\n\r\n### Creating an Instance and Performing a Search\r\n\r\nCreate an instance of the `Pesquisador` class and use the `get_response` method to perform searches:\r\n\r\n```python\r\n# Creating an instance of the Pesquisador class\r\nresearcher = Pesquisador()\r\n\r\n# Performing a search\r\nresults = researcher.get_response(\"Photosynthesis\")\r\n\r\n# Displaying the results\r\nprint(results)\r\n```\r\n\r\n### Package Structure\r\n\r\nThe package structure includes:\r\n\r\n- **`learnfetch/`**: Directory containing the package with the `pesquisador.py` module.\r\n  - **`__init__.py`**: File that makes the directory a Python package.\r\n  - **`pesquisador.py`**: Contains the `Pesquisador` class with methods for searching and extracting data.\r\n\r\n- **`tests/`**: Directory for unit tests.\r\n  - **`__init__.py`**: File that makes the directory a Python package.\r\n  - **`test_pesquisador.py`**: File containing tests for the `Pesquisador` class.\r\n\r\n## Complete Example\r\n\r\nHere is a complete example of using the library:\r\n\r\n```python\r\nfrom learnfetch import Pesquisador\r\n\r\n# Criando uma inst\u00c3\u00a2ncia da classe Pesquisador\r\npesquisador = Pesquisador()\r\n\r\n# Realizando uma busca\r\nresultados = pesquisador.get_response(\"Redes neurais\")\r\n\r\n# Pegando um determinado dicion\u00c3\u00a1rio da lista (por exemplo, o segundo)\r\nif len(resultados) > 1:\r\n        segundo_dicionario = resultados[1] \r\n\r\n        # Pegando um valor espec\u00c3\u00adfico dentro de um dicion\u00c3\u00a1rio\r\n        conteudo = segundo_dicionario.get(\"content\")\r\n        print(\"Conteudo do Segundo Dicion\u00c3\u00a1rio:\")\r\n        print(conteudo)\r\n```\r\n# Another\r\n```python\r\n    from learnfetch import Pesquisador\r\n    # O uso de docx \u00c3\u00a9 opcional, estou usando somente para desmostrar umas das utilidades da biblioteca\r\n    from docx import Document\r\n\r\n    # Criar uma inst\u00c3\u00a2ncia da classe Pesquisador\r\n    researcher = Pesquisador()\r\n\r\n    # Realizar uma busca\r\n    termo_de_busca = \"Fotoss\u00c3\u00adntese\"\r\n    resultados = researcher.get_response(termo_de_busca)\r\n\r\n    # Fun\u00c3\u00a7\u00c3\u00a3o para criar uma ficha de leitura para cada item\r\n    def adicionar_ficha_ao_documento(doc, titulo, conteudo):\r\n        doc.add_heading('Ficha de Leitura', level=1)\r\n        doc.add_heading('T\u00c3\u00adtulo:', level=2)\r\n        doc.add_paragraph(titulo)\r\n        doc.add_heading('Resumo:', level=2)\r\n        doc.add_paragraph(conteudo)\r\n        doc.add_heading('Coment\u00c3\u00a1rios:', level=2)\r\n        doc.add_paragraph('Adicione aqui suas observa\u00c3\u00a7\u00c3\u00b5es pessoais.')\r\n        doc.add_heading('Quest\u00c3\u00b5es levantadas:', level=2)\r\n        doc.add_paragraph('Liste aqui as quest\u00c3\u00b5es ou d\u00c3\u00bavidas surgidas durante a leitura.')\r\n        doc.add_paragraph(\"\\n\" + \"=\"*50 + \"\\n\")\r\n\r\n    # Criar um documento Word\r\n    documento = Document()\r\n\r\n    # Verificar se a chave 'results' est\u00c3\u00a1 presente no dicion\u00c3\u00a1rio retornado\r\n    if resultados:\r\n        # Iterar sobre cada item na lista de resultados\r\n        for item in resultados:\r\n            titulo = item.get('title', 'T\u00c3\u00adtulo n\u00c3\u00a3o encontrado')\r\n            conteudo = item.get('content', 'Conte\u00c3\u00bado n\u00c3\u00a3o encontrado')\r\n            adicionar_ficha_ao_documento(documento, titulo, conteudo)\r\n    else:\r\n        print(\"Nenhum resultado encontrado.\")\r\n\r\n    # Salvar o documento\r\n    nome_arquivo = f'ficha sobre {termo_de_busca}.docx'\r\n    documento.save(nome_arquivo)\r\n    print(f\"As fichas de leitura foram salvas no arquivo {nome_arquivo}.\")\r\n```\r\n## Contributing\r\n\r\nIf you would like to contribute to the project, feel free to open an issue or submit a pull request on the [GitHub repository](https://github.com/SaideOmaer1240/LearnFetch).\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## Contact\r\n\r\nFor any questions or suggestions, you can reach out to:\r\n\r\n- **Author**: Saide Omar Saide\r\n- **Email**: saideomarsaideleon@gmail.com\r\n \r\n\r\n### Explanation of Sections:\r\n\r\n1. **Introduction**: Describes the purpose of the library.\r\n2. **Installation**: Instructions for installing the library using pip.\r\n3. **Usage**: Examples of how to import, create an instance, and use the library.\r\n4. **Package Structure**: Explains the structure of the package directories and files.\r\n5. **Complete Example**: A detailed example of how to use the library.\r\n6. **Contributing**: Information on how to contribute to the project.\r\n7. **License**: Details about the project license.\r\n8. **Contact**: Contact information for support and suggestions.\r\n\r\nMake sure to adjust the content as needed to reflect the specifics of your project.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Uma biblioteca para buscar e extrair dados do site 'Toda Mat\u00e9ria'.",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/SaideOmaer1240/LearnFetch.git"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7749059b1656868f9e8245d560cca993689df9fc21c3df63ce3d4666fd760217",
                "md5": "1c8e4005cccd4ef73676a5cb8cf6ccf1",
                "sha256": "8e8d07c669b04258d6ecfbd6280644d185cdb97d077943e44aa853ff39b0ac66"
            },
            "downloads": -1,
            "filename": "LearnFetch-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1c8e4005cccd4ef73676a5cb8cf6ccf1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12.3",
            "size": 5233,
            "upload_time": "2024-08-18T08:41:20",
            "upload_time_iso_8601": "2024-08-18T08:41:20.633009Z",
            "url": "https://files.pythonhosted.org/packages/77/49/059b1656868f9e8245d560cca993689df9fc21c3df63ce3d4666fd760217/LearnFetch-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "61635df47de5c8b9ab5ba11ecd58d443eeeb45c1fd917570dc742eca6fe5071f",
                "md5": "d51c1900db6894bb5e418c91222b2008",
                "sha256": "67469ab807bd8baab1a76c049fe74bbe934c67152083eef77ca362e41e3eb635"
            },
            "downloads": -1,
            "filename": "learnfetch-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "d51c1900db6894bb5e418c91222b2008",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12.3",
            "size": 5283,
            "upload_time": "2024-08-18T08:41:23",
            "upload_time_iso_8601": "2024-08-18T08:41:23.097455Z",
            "url": "https://files.pythonhosted.org/packages/61/63/5df47de5c8b9ab5ba11ecd58d443eeeb45c1fd917570dc742eca6fe5071f/learnfetch-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-18 08:41:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SaideOmaer1240",
    "github_project": "LearnFetch",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "learnfetch"
}
        
Elapsed time: 0.29099s