NlpToolkit-Deasciifier-Cy


NameNlpToolkit-Deasciifier-Cy JSON
Version 1.0.12 PyPI version JSON
download
home_pagehttps://github.com/StarlangSoftware/TurkishDeasciifier-Cy
SummaryTurkish Asciifier/Deasciifier Library
upload_time2024-09-02 18:16:56
maintainerNone
docs_urlNone
authorolcaytaner
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Turkish Deasciifier
============

This tool is used to turn Turkish text written in ASCII characters, which do not include some letters of the Turkish alphabet, into correctly written text with the appropriate Turkish characters (such as ı, ş, and so forth). It can also do the opposite, turning Turkish input into ASCII text, for the purpose of processing.

Video Lectures
============

[<img src="https://github.com/StarlangSoftware/TurkishDeasciifier/blob/master/video.jpg" width="50%">](https://youtu.be/b18-k8SKQ6U)

For Developers
============

You can also see [Python](https://github.com/starlangsoftware/TurkishDeasciifier-Py), [Java](https://github.com/starlangsoftware/TurkishDeasciifier), [C++](https://github.com/starlangsoftware/TurkishDeasciifier-CPP), [C](https://github.com/starlangsoftware/TurkishDeasciifier-C), [Swift](https://github.com/starlangsoftware/TurkishDeasciifier-Swift), [Js](https://github.com/starlangsoftware/TurkishDeasciifier-Js), or [C#](https://github.com/starlangsoftware/TurkishDeasciifier-CS) repository.

## Requirements

* [Python 3.7 or higher](#python)
* [Git](#git)

### Python 

To check if you have a compatible version of Python installed, use the following command:

    python -V
    
You can find the latest version of Python [here](https://www.python.org/downloads/).

### Git

Install the [latest version of Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git).

## Pip Install

	pip3 install NlpToolkit-Deasciifier-Cy

## Download Code

In order to work on code, create a fork from GitHub page. 
Use Git for cloning the code to your local or below line for Ubuntu:

	git clone <your-fork-git-link>

A directory called Deasciifier will be created. Or you can use below link for exploring the code:

	git clone https://github.com/starlangsoftware/TurkishDeasciifier-Cy.git

## Open project with Pycharm IDE

Steps for opening the cloned project:

* Start IDE
* Select **File | Open** from main menu
* Choose `TurkishDeasciifier-CY` file
* Select open as project option
* Couple of seconds, dependencies will be downloaded. 

Detailed Description
============

+ [Asciifier](#using-asciifier)
+ [Deasciifier](#using-deasciifier)

## Using Asciifier

Asciifier converts text to a format containing only ASCII letters. This can be instantiated and used as follows:

      asciifier = SimpleAsciifier()
      sentence = Sentence("çocuk")
      asciified = asciifier.asciify(sentence)
      print(asciified)

Output:
    
    cocuk      

## Using Deasciifier

Deasciifier converts text written with only ASCII letters to its correct form using corresponding letters in Turkish alphabet. There are two types of `Deasciifier`:


* `SimpleDeasciifier`

    The instantiation can be done as follows:  
    
        fsm = FsmMorphologicalAnalyzer()
        deasciifier = SimpleDeasciifier(fsm)
     
* `NGramDeasciifier`
    
    * To create an instance of this, both a `FsmMorphologicalAnalyzer` and a `NGram` is required. 
    
    * `FsmMorphologicalAnalyzer` can be instantiated as follows:
        
            fsm = FsmMorphologicalAnalyzer()
    
    * `NGram` can be either trained from scratch or loaded from an existing model.
        
        * Training from scratch:
                
                corpus = Corpus("corpus.txt")
                ngram = NGram(corpus.getAllWordsAsArrayList(), 1)
                ngram.calculateNGramProbabilities(LaplaceSmoothing())
                
        *There are many smoothing methods available. For other smoothing methods, check [here](https://github.com/olcaytaner/NGram).*       
        * Loading from an existing model:
     
                    ngram = NGram("ngram.txt")

	*For further details, please check [here](https://github.com/starlangsoftware/NGram).*        
            
    * Afterwards, `NGramDeasciifier` can be created as below:
        
            deasciifier = NGramDeasciifier(fsm, ngram)
     
A text can be deasciified as follows:
     
    sentence = Sentence("cocuk")
    deasciified = deasciifier.deasciify(sentence)
    print(deasciified)
    
Output:

    çocuk
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/StarlangSoftware/TurkishDeasciifier-Cy",
    "name": "NlpToolkit-Deasciifier-Cy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "olcaytaner",
    "author_email": "olcay.yildiz@ozyegin.edu.tr",
    "download_url": "https://files.pythonhosted.org/packages/be/b1/be438bec0a17cba97e6ec0d996b11259ad90cb35be9735805197cef2514d/NlpToolkit-Deasciifier-Cy-1.0.12.tar.gz",
    "platform": null,
    "description": "Turkish Deasciifier\n============\n\nThis tool is used to turn Turkish text written in ASCII characters, which do not include some letters of the Turkish alphabet, into correctly written text with the appropriate Turkish characters (such as \u0131, \u015f, and so forth). It can also do the opposite, turning Turkish input into ASCII text, for the purpose of processing.\n\nVideo Lectures\n============\n\n[<img src=\"https://github.com/StarlangSoftware/TurkishDeasciifier/blob/master/video.jpg\" width=\"50%\">](https://youtu.be/b18-k8SKQ6U)\n\nFor Developers\n============\n\nYou can also see [Python](https://github.com/starlangsoftware/TurkishDeasciifier-Py), [Java](https://github.com/starlangsoftware/TurkishDeasciifier), [C++](https://github.com/starlangsoftware/TurkishDeasciifier-CPP), [C](https://github.com/starlangsoftware/TurkishDeasciifier-C), [Swift](https://github.com/starlangsoftware/TurkishDeasciifier-Swift), [Js](https://github.com/starlangsoftware/TurkishDeasciifier-Js), or [C#](https://github.com/starlangsoftware/TurkishDeasciifier-CS) repository.\n\n## Requirements\n\n* [Python 3.7 or higher](#python)\n* [Git](#git)\n\n### Python \n\nTo check if you have a compatible version of Python installed, use the following command:\n\n    python -V\n    \nYou can find the latest version of Python [here](https://www.python.org/downloads/).\n\n### Git\n\nInstall the [latest version of Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git).\n\n## Pip Install\n\n\tpip3 install NlpToolkit-Deasciifier-Cy\n\n## Download Code\n\nIn order to work on code, create a fork from GitHub page. \nUse Git for cloning the code to your local or below line for Ubuntu:\n\n\tgit clone <your-fork-git-link>\n\nA directory called Deasciifier will be created. Or you can use below link for exploring the code:\n\n\tgit clone https://github.com/starlangsoftware/TurkishDeasciifier-Cy.git\n\n## Open project with Pycharm IDE\n\nSteps for opening the cloned project:\n\n* Start IDE\n* Select **File | Open** from main menu\n* Choose `TurkishDeasciifier-CY` file\n* Select open as project option\n* Couple of seconds, dependencies will be downloaded. \n\nDetailed Description\n============\n\n+ [Asciifier](#using-asciifier)\n+ [Deasciifier](#using-deasciifier)\n\n## Using Asciifier\n\nAsciifier converts text to a format containing only ASCII letters. This can be instantiated and used as follows:\n\n      asciifier = SimpleAsciifier()\n      sentence = Sentence(\"\u00e7ocuk\")\n      asciified = asciifier.asciify(sentence)\n      print(asciified)\n\nOutput:\n    \n    cocuk      \n\n## Using Deasciifier\n\nDeasciifier converts text written with only ASCII letters to its correct form using corresponding letters in Turkish alphabet. There are two types of `Deasciifier`:\n\n\n* `SimpleDeasciifier`\n\n    The instantiation can be done as follows:  \n    \n        fsm = FsmMorphologicalAnalyzer()\n        deasciifier = SimpleDeasciifier(fsm)\n     \n* `NGramDeasciifier`\n    \n    * To create an instance of this, both a `FsmMorphologicalAnalyzer` and a `NGram` is required. \n    \n    * `FsmMorphologicalAnalyzer` can be instantiated as follows:\n        \n            fsm = FsmMorphologicalAnalyzer()\n    \n    * `NGram` can be either trained from scratch or loaded from an existing model.\n        \n        * Training from scratch:\n                \n                corpus = Corpus(\"corpus.txt\")\n                ngram = NGram(corpus.getAllWordsAsArrayList(), 1)\n                ngram.calculateNGramProbabilities(LaplaceSmoothing())\n                \n        *There are many smoothing methods available. For other smoothing methods, check [here](https://github.com/olcaytaner/NGram).*       \n        * Loading from an existing model:\n     \n                    ngram = NGram(\"ngram.txt\")\n\n\t*For further details, please check [here](https://github.com/starlangsoftware/NGram).*        \n            \n    * Afterwards, `NGramDeasciifier` can be created as below:\n        \n            deasciifier = NGramDeasciifier(fsm, ngram)\n     \nA text can be deasciified as follows:\n     \n    sentence = Sentence(\"cocuk\")\n    deasciified = deasciifier.deasciify(sentence)\n    print(deasciified)\n    \nOutput:\n\n    \u00e7ocuk",
    "bugtrack_url": null,
    "license": null,
    "summary": "Turkish Asciifier/Deasciifier Library",
    "version": "1.0.12",
    "project_urls": {
        "Homepage": "https://github.com/StarlangSoftware/TurkishDeasciifier-Cy"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "beb1be438bec0a17cba97e6ec0d996b11259ad90cb35be9735805197cef2514d",
                "md5": "2a640f30b4765f0717596d951a2fbfaf",
                "sha256": "a03d00e8a5bedd97bcb221d8383eef60bb80356509928e81b521e5176a408d2f"
            },
            "downloads": -1,
            "filename": "NlpToolkit-Deasciifier-Cy-1.0.12.tar.gz",
            "has_sig": false,
            "md5_digest": "2a640f30b4765f0717596d951a2fbfaf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 227539,
            "upload_time": "2024-09-02T18:16:56",
            "upload_time_iso_8601": "2024-09-02T18:16:56.759527Z",
            "url": "https://files.pythonhosted.org/packages/be/b1/be438bec0a17cba97e6ec0d996b11259ad90cb35be9735805197cef2514d/NlpToolkit-Deasciifier-Cy-1.0.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-02 18:16:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "StarlangSoftware",
    "github_project": "TurkishDeasciifier-Cy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "nlptoolkit-deasciifier-cy"
}
        
Elapsed time: 0.47652s