PyXCSAO


NamePyXCSAO JSON
Version 0.2 PyPI version JSON
download
home_pagehttps://github.com/mkounkel/pyxcsao
SummaryReplicates functionality of IRAF XCSAO
upload_time2023-11-30 19:35:45
maintainer
docs_urlNone
authorMarina Kounkel
requires_python>=3.6
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyXCSAO
Replicates functionality of IRAF XCSAO

To run:

### Import
from pyxcsao.crosscorrelate import PyXCSAO

### Initiates instance:
b=PyXCSAO(st_lambda=5000,end_lambda=10000)

---optional parameters: ncols=8192,low_bin=0,top_low=10,top_nrun=125,nrun=255,bell_window=0.05,minvel=-500,maxvel=500

### Adds Synthetic grid

First time running:
b.add_grid(grid_pickle='phoenix.p',grid_path='phoenix/*0.0/*4.5*.fits',grid_class='phoenix') 

---options: phoenix, phoenixhires, coelho

From a precompiled pickle file:

b.add_grid(grid_pickle='phoenix.p')

### Adds data

b.add_spectrum('file.fits',data_class='boss')

---options: boss,lamost,segue,user

### Run XCSAO and get parameters

print(b.run_XCSAO())

### Optimized for large grids:

print(b.run_XCSAO_optimized())

### Plot CCF:

plt.plot(b.lag,b.best_ccf)

### Example Code
```python
import glob
import pandas as pd
from pyxcsao.crosscorrelate import PyXCSAO
from astropy.table import Table
import time

cat=Table.read('path.fits')

best=[]
b=PyXCSAO(st_lambda=5000,end_lambda=10000)
b.add_grid(grid_pickle='phoenix_full1.p')


batchsize=500
for j in range(0,len(cat),batchsize):
    cat1=cat[j:j+batchsize]
    print(j)
    for i in range(len(cat1)):
        path=cat1['path'][i]
        try:
            b.add_spectrum(path)
            x=b.run_XCSAO_optimized()
            best.append(x.copy())
        except:
            print(path)
            

df = pd.DataFrame(best)
df.to_csv('batch.csv')
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mkounkel/pyxcsao",
    "name": "PyXCSAO",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "",
    "author": "Marina Kounkel",
    "author_email": "marina.kounkel@vanderbilt.edu",
    "download_url": "https://files.pythonhosted.org/packages/45/72/36260bce092a4a54133d53adef257cf5404f261027f0f3aa016aa4474d5e/PyXCSAO-0.2.tar.gz",
    "platform": null,
    "description": "# PyXCSAO\nReplicates functionality of IRAF XCSAO\n\nTo run:\n\n### Import\nfrom pyxcsao.crosscorrelate import PyXCSAO\n\n### Initiates instance:\nb=PyXCSAO(st_lambda=5000,end_lambda=10000)\n\n---optional parameters: ncols=8192,low_bin=0,top_low=10,top_nrun=125,nrun=255,bell_window=0.05,minvel=-500,maxvel=500\n\n### Adds Synthetic grid\n\nFirst time running:\nb.add_grid(grid_pickle='phoenix.p',grid_path='phoenix/*0.0/*4.5*.fits',grid_class='phoenix') \n\n---options: phoenix, phoenixhires, coelho\n\nFrom a precompiled pickle file:\n\nb.add_grid(grid_pickle='phoenix.p')\n\n### Adds data\n\nb.add_spectrum('file.fits',data_class='boss')\n\n---options: boss,lamost,segue,user\n\n### Run XCSAO and get parameters\n\nprint(b.run_XCSAO())\n\n### Optimized for large grids:\n\nprint(b.run_XCSAO_optimized())\n\n### Plot CCF:\n\nplt.plot(b.lag,b.best_ccf)\n\n### Example Code\n```python\nimport glob\nimport pandas as pd\nfrom pyxcsao.crosscorrelate import PyXCSAO\nfrom astropy.table import Table\nimport time\n\ncat=Table.read('path.fits')\n\nbest=[]\nb=PyXCSAO(st_lambda=5000,end_lambda=10000)\nb.add_grid(grid_pickle='phoenix_full1.p')\n\n\nbatchsize=500\nfor j in range(0,len(cat),batchsize):\n    cat1=cat[j:j+batchsize]\n    print(j)\n    for i in range(len(cat1)):\n        path=cat1['path'][i]\n        try:\n            b.add_spectrum(path)\n            x=b.run_XCSAO_optimized()\n            best.append(x.copy())\n        except:\n            print(path)\n            \n\ndf = pd.DataFrame(best)\ndf.to_csv('batch.csv')\n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Replicates functionality of IRAF XCSAO",
    "version": "0.2",
    "project_urls": {
        "Homepage": "https://github.com/mkounkel/pyxcsao"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "effeb5f543fd5ed76f5ba6234198cea10a03f1f9e7f9d0266415472c8d446365",
                "md5": "66d30bba2b72c627fc192060b0ec539e",
                "sha256": "04d37de2f9f0693bc965dac245de31ae14f6c7e9d42b64b57e3cda6b6b46c92c"
            },
            "downloads": -1,
            "filename": "PyXCSAO-0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "66d30bba2b72c627fc192060b0ec539e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 9526,
            "upload_time": "2023-11-30T19:35:42",
            "upload_time_iso_8601": "2023-11-30T19:35:42.842644Z",
            "url": "https://files.pythonhosted.org/packages/ef/fe/b5f543fd5ed76f5ba6234198cea10a03f1f9e7f9d0266415472c8d446365/PyXCSAO-0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "457236260bce092a4a54133d53adef257cf5404f261027f0f3aa016aa4474d5e",
                "md5": "e1202b839c89adf55b8d95c70bff9bc9",
                "sha256": "333dcb1d659f01ec886dff50c00f5b140461fd0df3de871186b7e5bcdb1218f4"
            },
            "downloads": -1,
            "filename": "PyXCSAO-0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "e1202b839c89adf55b8d95c70bff9bc9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 8739,
            "upload_time": "2023-11-30T19:35:45",
            "upload_time_iso_8601": "2023-11-30T19:35:45.146787Z",
            "url": "https://files.pythonhosted.org/packages/45/72/36260bce092a4a54133d53adef257cf5404f261027f0f3aa016aa4474d5e/PyXCSAO-0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-30 19:35:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mkounkel",
    "github_project": "pyxcsao",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pyxcsao"
}
        
Elapsed time: 0.15765s