RobustGibbs


NameRobustGibbs JSON
Version 0.0.7 PyPI version JSON
download
home_page
SummaryPackage for Gibbs Sampling with Robust Statistics.
upload_time2023-09-06 14:00:09
maintainer
docs_urlNone
author
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RobustGibbs Package

`Robust_Gibbs` is a package that allows users to sample from the parameters posteriors when only some robust statistics of the data are available. The paper that describe all the theory of the methods can be found on arXiV (https://arxiv.org/abs/2307.14973). 

## Main functions

We propose here three mains functions named `Gibbs_med_MAD`, `Gibbs_med_IQR` and `Gibbs_Quantile` to cover the case when we observe the pairs (median, MAD) or (median, IQR) or a sequence of quantiles. 


## Install

Install via clone the repository and install via pip

```shell
git clone https://github.com/???
pip install .
```

## Use

Here, we sample from the posterior of parameters of a normal distribution using the couple of conjuguate couple Normal-InverseGamma. 

```python
# CODE
```

## Available distributions/likelihoods
* Normal distribution (`distribution="normal"`)
* Cauchy distribution (`distribution="cauchy"`)
* Weibull distribution (`distribution="weibull"`)
* Translated distribution (`distribution="translated_weibull"`)

## Available location priors
* Normal (`par_loc="normal"`)
* Cauchy (`par_loc="cauchy"`)
* Gamma (`par_loc="gamma"`)

## Available scale priors
* Gamma (`par_scale="gamma"`)
* Jeffreys (`par_scale="jeffreys"`)

## Available shape prior
* Gamma (`par_shape="gamma"`)



            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "RobustGibbs",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "",
    "author_email": "Antoine Luciano <antoine.luciano@dauphine.psl.eu>",
    "download_url": "https://files.pythonhosted.org/packages/84/d6/5eecf9df912f5b5d369cf6a81320f9e4a246e19820c54342891bfdf46281/robustgibbs-0.0.7.tar.gz",
    "platform": null,
    "description": "# RobustGibbs Package\n\n`Robust_Gibbs` is a package that allows users to sample from the parameters posteriors when only some robust statistics of the data are available. The paper that describe all the theory of the methods can be found on arXiV (https://arxiv.org/abs/2307.14973). \n\n## Main functions\n\nWe propose here three mains functions named `Gibbs_med_MAD`, `Gibbs_med_IQR` and `Gibbs_Quantile` to cover the case when we observe the pairs (median, MAD) or (median, IQR) or a sequence of quantiles. \n\n\n## Install\n\nInstall via clone the repository and install via pip\n\n```shell\ngit clone https://github.com/???\npip install .\n```\n\n## Use\n\nHere, we sample from the posterior of parameters of a normal distribution using the couple of conjuguate couple Normal-InverseGamma. \n\n```python\n# CODE\n```\n\n## Available distributions/likelihoods\n* Normal distribution (`distribution=\"normal\"`)\n* Cauchy distribution (`distribution=\"cauchy\"`)\n* Weibull distribution (`distribution=\"weibull\"`)\n* Translated distribution (`distribution=\"translated_weibull\"`)\n\n## Available location priors\n* Normal (`par_loc=\"normal\"`)\n* Cauchy (`par_loc=\"cauchy\"`)\n* Gamma (`par_loc=\"gamma\"`)\n\n## Available scale priors\n* Gamma (`par_scale=\"gamma\"`)\n* Jeffreys (`par_scale=\"jeffreys\"`)\n\n## Available shape prior\n* Gamma (`par_shape=\"gamma\"`)\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Package for Gibbs Sampling with Robust Statistics.",
    "version": "0.0.7",
    "project_urls": {
        "Bug Tracker": "https://github.com/pypa/sampleproject/issues",
        "Homepage": "https://github.com/pypa/sampleproject"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f9fa350e9156a9f76e48e8c886924c6ae7b22c470e0c40aee323d508c4bae8b3",
                "md5": "70c1519a004c1fa43574e462e3d6dd25",
                "sha256": "39f876cf5198afeae66d543e67a4711a67e9ae43eccdcd19520a412e13b69313"
            },
            "downloads": -1,
            "filename": "robustgibbs-0.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "70c1519a004c1fa43574e462e3d6dd25",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 17588,
            "upload_time": "2023-09-06T14:00:05",
            "upload_time_iso_8601": "2023-09-06T14:00:05.871655Z",
            "url": "https://files.pythonhosted.org/packages/f9/fa/350e9156a9f76e48e8c886924c6ae7b22c470e0c40aee323d508c4bae8b3/robustgibbs-0.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84d65eecf9df912f5b5d369cf6a81320f9e4a246e19820c54342891bfdf46281",
                "md5": "5ed344bb8a80adf98f07d341a788a92e",
                "sha256": "c55d479d3338b0b345a0aaf39a57eb772345bbfb9a20d5c997fff84b60fd4604"
            },
            "downloads": -1,
            "filename": "robustgibbs-0.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "5ed344bb8a80adf98f07d341a788a92e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 638575,
            "upload_time": "2023-09-06T14:00:09",
            "upload_time_iso_8601": "2023-09-06T14:00:09.573208Z",
            "url": "https://files.pythonhosted.org/packages/84/d6/5eecf9df912f5b5d369cf6a81320f9e4a246e19820c54342891bfdf46281/robustgibbs-0.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-06 14:00:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pypa",
    "github_project": "sampleproject",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "robustgibbs"
}
        
Elapsed time: 0.18763s