| Name | RobustGibbs JSON |
| Version |
0.0.7
JSON |
| download |
| home_page | |
| Summary | Package for Gibbs Sampling with Robust Statistics. |
| upload_time | 2023-09-06 14:00:09 |
| maintainer | |
| docs_url | None |
| author | |
| requires_python | >=3.7 |
| license | |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# RobustGibbs Package
`Robust_Gibbs` is a package that allows users to sample from the parameters posteriors when only some robust statistics of the data are available. The paper that describe all the theory of the methods can be found on arXiV (https://arxiv.org/abs/2307.14973).
## Main functions
We propose here three mains functions named `Gibbs_med_MAD`, `Gibbs_med_IQR` and `Gibbs_Quantile` to cover the case when we observe the pairs (median, MAD) or (median, IQR) or a sequence of quantiles.
## Install
Install via clone the repository and install via pip
```shell
git clone https://github.com/???
pip install .
```
## Use
Here, we sample from the posterior of parameters of a normal distribution using the couple of conjuguate couple Normal-InverseGamma.
```python
# CODE
```
## Available distributions/likelihoods
* Normal distribution (`distribution="normal"`)
* Cauchy distribution (`distribution="cauchy"`)
* Weibull distribution (`distribution="weibull"`)
* Translated distribution (`distribution="translated_weibull"`)
## Available location priors
* Normal (`par_loc="normal"`)
* Cauchy (`par_loc="cauchy"`)
* Gamma (`par_loc="gamma"`)
## Available scale priors
* Gamma (`par_scale="gamma"`)
* Jeffreys (`par_scale="jeffreys"`)
## Available shape prior
* Gamma (`par_shape="gamma"`)
Raw data
{
"_id": null,
"home_page": "",
"name": "RobustGibbs",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "",
"author_email": "Antoine Luciano <antoine.luciano@dauphine.psl.eu>",
"download_url": "https://files.pythonhosted.org/packages/84/d6/5eecf9df912f5b5d369cf6a81320f9e4a246e19820c54342891bfdf46281/robustgibbs-0.0.7.tar.gz",
"platform": null,
"description": "# RobustGibbs Package\n\n`Robust_Gibbs` is a package that allows users to sample from the parameters posteriors when only some robust statistics of the data are available. The paper that describe all the theory of the methods can be found on arXiV (https://arxiv.org/abs/2307.14973). \n\n## Main functions\n\nWe propose here three mains functions named `Gibbs_med_MAD`, `Gibbs_med_IQR` and `Gibbs_Quantile` to cover the case when we observe the pairs (median, MAD) or (median, IQR) or a sequence of quantiles. \n\n\n## Install\n\nInstall via clone the repository and install via pip\n\n```shell\ngit clone https://github.com/???\npip install .\n```\n\n## Use\n\nHere, we sample from the posterior of parameters of a normal distribution using the couple of conjuguate couple Normal-InverseGamma. \n\n```python\n# CODE\n```\n\n## Available distributions/likelihoods\n* Normal distribution (`distribution=\"normal\"`)\n* Cauchy distribution (`distribution=\"cauchy\"`)\n* Weibull distribution (`distribution=\"weibull\"`)\n* Translated distribution (`distribution=\"translated_weibull\"`)\n\n## Available location priors\n* Normal (`par_loc=\"normal\"`)\n* Cauchy (`par_loc=\"cauchy\"`)\n* Gamma (`par_loc=\"gamma\"`)\n\n## Available scale priors\n* Gamma (`par_scale=\"gamma\"`)\n* Jeffreys (`par_scale=\"jeffreys\"`)\n\n## Available shape prior\n* Gamma (`par_shape=\"gamma\"`)\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Package for Gibbs Sampling with Robust Statistics.",
"version": "0.0.7",
"project_urls": {
"Bug Tracker": "https://github.com/pypa/sampleproject/issues",
"Homepage": "https://github.com/pypa/sampleproject"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f9fa350e9156a9f76e48e8c886924c6ae7b22c470e0c40aee323d508c4bae8b3",
"md5": "70c1519a004c1fa43574e462e3d6dd25",
"sha256": "39f876cf5198afeae66d543e67a4711a67e9ae43eccdcd19520a412e13b69313"
},
"downloads": -1,
"filename": "robustgibbs-0.0.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "70c1519a004c1fa43574e462e3d6dd25",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 17588,
"upload_time": "2023-09-06T14:00:05",
"upload_time_iso_8601": "2023-09-06T14:00:05.871655Z",
"url": "https://files.pythonhosted.org/packages/f9/fa/350e9156a9f76e48e8c886924c6ae7b22c470e0c40aee323d508c4bae8b3/robustgibbs-0.0.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "84d65eecf9df912f5b5d369cf6a81320f9e4a246e19820c54342891bfdf46281",
"md5": "5ed344bb8a80adf98f07d341a788a92e",
"sha256": "c55d479d3338b0b345a0aaf39a57eb772345bbfb9a20d5c997fff84b60fd4604"
},
"downloads": -1,
"filename": "robustgibbs-0.0.7.tar.gz",
"has_sig": false,
"md5_digest": "5ed344bb8a80adf98f07d341a788a92e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 638575,
"upload_time": "2023-09-06T14:00:09",
"upload_time_iso_8601": "2023-09-06T14:00:09.573208Z",
"url": "https://files.pythonhosted.org/packages/84/d6/5eecf9df912f5b5d369cf6a81320f9e4a246e19820c54342891bfdf46281/robustgibbs-0.0.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-06 14:00:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pypa",
"github_project": "sampleproject",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "robustgibbs"
}