SWEvolML


NameSWEvolML JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryDefault template for PDM package
upload_time2024-09-08 05:17:29
maintainerNone
docs_urlNone
authorNone
requires_python==3.11.*
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Project description 

This Python package is designed to classify fish species, distinguishing between Bream and Smelt.
We use the KNN algorithm to implement this prediction system

# what is special about

1. This preidict system start with empty dataframe
2. This machine learning rate will increase as much as the data you put in
3. This machine will show you the ratio of correct answers to incorrect answers.Therefore, you can gauge the machine's level of growth from the accuracy rate.
5. This machine will show you the location of your data which you typed  

# System Envrioment and Dependencies for Use
![Python Version](https://img.shields.io/badge/python-3.11-blue)
![Pandas](https://img.shields.io/badge/pandas-2.2.2-red)
![Scikit-learn](https://img.shields.io/badge/scikit--learn-1.5.1-green)
![Plotext](https://img.shields.io/badge/plotext-5.2.8-yello)

# How to install
```python
$ pip install SWEvolML 
```
# How to use 
Experience the machine learning program that grows through the repeated execution of commands

```python
$ gml
길이와 무게를 입력하세요:18.5 17  # Input length and weight data separated by spaces to get the prediction.
빙어                              # ML will tell you prediction
정답을 입력하세요(y or n):y       # Input yes or no depending on whether the answer is correct or incorrect
역시 그렇군요                     # ML will answer as your respond  

                                  
[정답율]                                                              # print accuracy ratio 
[##########################################--------] 85.00%
[입력 데이터 위치]
           location of input data                                     # print location of your recent input data on scatter plot   
     ┌─────────────────────────────────┐                           
340.0┤                                B│
284.6┤                              B B│
173.8┤                                 │
118.3┤                                 │
  7.5┤SS  S           *                │
     └┬───────┬───────┬───────┬───────┬┘
    10.5    14.5    18.5    22.5   26.5
weight             length

```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "SWEvolML",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "==3.11.*",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "GITSangWoo <dogcenta@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/f7/04/207d25685f08d29291fdf9c77488b51d564350c4d0ac91cd8652e2b0b600/swevolml-0.1.0.tar.gz",
    "platform": null,
    "description": "# Project description \n\nThis Python package is designed to classify fish species, distinguishing between Bream and Smelt.\nWe use the KNN algorithm to implement this prediction system\n\n# what is special about\n\n1. This preidict system start with empty dataframe\n2. This machine learning rate will increase as much as the data you put in\n3. This machine will show you the ratio of correct answers to incorrect answers.Therefore, you can gauge the machine's level of growth from the accuracy rate.\n5. This machine will show you the location of your data which you typed  \n\n# System Envrioment and Dependencies for Use\n![Python Version](https://img.shields.io/badge/python-3.11-blue)\n![Pandas](https://img.shields.io/badge/pandas-2.2.2-red)\n![Scikit-learn](https://img.shields.io/badge/scikit--learn-1.5.1-green)\n![Plotext](https://img.shields.io/badge/plotext-5.2.8-yello)\n\n# How to install\n```python\n$ pip install SWEvolML \n```\n# How to use \nExperience the machine learning program that grows through the repeated execution of commands\n\n```python\n$ gml\n\uae38\uc774\uc640 \ubb34\uac8c\ub97c \uc785\ub825\ud558\uc138\uc694:18.5 17  # Input length and weight data separated by spaces to get the prediction.\n\ube59\uc5b4                              # ML will tell you prediction\n\uc815\ub2f5\uc744 \uc785\ub825\ud558\uc138\uc694(y or n):y       # Input yes or no depending on whether the answer is correct or incorrect\n\uc5ed\uc2dc \uadf8\ub807\uad70\uc694                     # ML will answer as your respond  \n\n                                  \n[\uc815\ub2f5\uc728]                                                              # print accuracy ratio \n[##########################################--------] 85.00%\n[\uc785\ub825 \ub370\uc774\ud130 \uc704\uce58]\n           location of input data                                     # print location of your recent input data on scatter plot   \n     \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510                           \n340.0\u2524                                B\u2502\n284.6\u2524                              B B\u2502\n173.8\u2524                                 \u2502\n118.3\u2524                                 \u2502\n  7.5\u2524SS  S           *                \u2502\n     \u2514\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2518\n    10.5    14.5    18.5    22.5   26.5\nweight             length\n\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Default template for PDM package",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/GITSangWoo/SWEvolML",
        "Issues": "https://github.com/GITSangWoo/SWEvolML/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "259ec2ef6ad2e97e0f4c42b3d8b03b99f705791148240fa3e01761854d10d92c",
                "md5": "46312425635c098d32cf049608e48c55",
                "sha256": "3cecbe1dc3a9be505a886696055a796edd1ef7039bf66538b4bd57eb0195a12e"
            },
            "downloads": -1,
            "filename": "swevolml-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "46312425635c098d32cf049608e48c55",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "==3.11.*",
            "size": 4185,
            "upload_time": "2024-09-08T05:19:20",
            "upload_time_iso_8601": "2024-09-08T05:19:20.522347Z",
            "url": "https://files.pythonhosted.org/packages/25/9e/c2ef6ad2e97e0f4c42b3d8b03b99f705791148240fa3e01761854d10d92c/swevolml-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4adb9e02708f7b5064c88f28de1cce827b3f4dce333f4c85e40986dd762c1cea",
                "md5": "e37a656e60b4c887d4c45d4debec5935",
                "sha256": "1148921597d20840457e3a5db9d795d54152e35e064a280005f3f6403464a548"
            },
            "downloads": -1,
            "filename": "SWEvolML-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e37a656e60b4c887d4c45d4debec5935",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "==3.11.*",
            "size": 4394,
            "upload_time": "2024-09-08T05:17:26",
            "upload_time_iso_8601": "2024-09-08T05:17:26.990814Z",
            "url": "https://files.pythonhosted.org/packages/4a/db/9e02708f7b5064c88f28de1cce827b3f4dce333f4c85e40986dd762c1cea/SWEvolML-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f704207d25685f08d29291fdf9c77488b51d564350c4d0ac91cd8652e2b0b600",
                "md5": "587bfc64bfbbdbdefcd42e268667001b",
                "sha256": "a79d10eee4aff3cf2298631bc638fc3668e99090decf259fafdbfe8a321213d7"
            },
            "downloads": -1,
            "filename": "swevolml-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "587bfc64bfbbdbdefcd42e268667001b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "==3.11.*",
            "size": 3657,
            "upload_time": "2024-09-08T05:17:29",
            "upload_time_iso_8601": "2024-09-08T05:17:29.420780Z",
            "url": "https://files.pythonhosted.org/packages/f7/04/207d25685f08d29291fdf9c77488b51d564350c4d0ac91cd8652e2b0b600/swevolml-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-08 05:17:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "GITSangWoo",
    "github_project": "SWEvolML",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "swevolml"
}
        
Elapsed time: 0.34071s