TronGisPy


NameTronGisPy JSON
Version 1.4.8 PyPI version JSON
download
home_pagehttps://github.com/thinktron/TronGisPy
SummaryGis raster data processing tool
upload_time2023-12-25 13:59:19
maintainer
docs_urlNone
authorThinktron
requires_python
license
keywords
VCS
bugtrack_url
requirements affine alabaster astroid attrs autopep8 Babel bleach certifi chardet click click-plugins cligj colorama cycler decorator descartes docutils Fiona GDAL geopandas idna imagesize importlib-metadata isort Jinja2 joblib keyring kiwisolver lazy-object-proxy llvmlite MarkupSafe matplotlib mccabe munch numba numpy numpydoc opencv-python packaging pandas pkginfo pycodestyle Pygments pylint pyparsing pyproj python-dateutil pytz pywin32-ctypes readme-renderer requests requests-toolbelt Rtree scikit-learn scipy Shapely six snowballstemmer Sphinx sphinx-rtd-theme sphinxcontrib-applehelp sphinxcontrib-devhelp sphinxcontrib-htmlhelp sphinxcontrib-jsmath sphinxcontrib-qthelp sphinxcontrib-serializinghtml threadpoolctl toml tqdm twine typed-ast urllib3 webencodings wrapt zipp
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![TronGisPy](https://raw.githubusercontent.com/thinktron/TronGisPy/master/static/trongispy.02-01.png)

# Introduction
TronGisPy aims to automate the whole GIS process on raster data using python interface. To get start, please see [GettingStarted.ipynb](https://github.com/thinktron/TronGisPy/blob/master/GettingStarted.ipynb). The main module are listed below:

- **Raster**: This module is Main class in TronGisPy. Use `ras = tgp.read_raster('<file_path>')` to read the file as Raster object. A Raster object contains all required attribute for a gis raster file such as *.tif* or *.geotiff* file including digital number for each pixel (`ras.data`), number of rows (`ras.rows`), number of columns (`ras.cols`), number of bands (`ras.bands`), geo_transform (`ras.geo_transform`), projection (`ras.projection`), no_data_value and metadata. The Raster object can also be plot with GeoDataFrame(shapefile) on the same canvas using `ras.plot()`. Functions like `ras.reproject()`, `ras.remap()` and `ras.refine_resolution()` are useful functions.

- **CRS**: Convert the projection sys between well known text (WKT) and epsg(`tgp.epsg_to_wkt`, `tgp.wkt_to_epsg`). Convert the indexing sys tem between numpy index and coordinate system(`tgp.coords_to_npidxs`, `tgp.npidxs_to_coords`).

- **ShapeGrid**: Interaction between raster and vector data including `tgp.ShapeGrid.rasterize_layer`, `tgp.ShapeGrid.rasterize_layer_by_ref_raster`, `tgp.ShapeGrid.vectorize_layer`, `tgp.ShapeGrid.clip_raster_with_polygon` and `tgp.ShapeGrid.clip_raster_with_extent`.

- **DEMProcessor**: General dem processing functions including `tgp.DEMProcessor.dem_to_hillshade`, `tgp.DEMProcessor.dem_to_slope`, `tgp.DEMProcessor.dem_to_aspect`, `tgp.DEMProcessor.dem_to_TRI`, `tgp.DEMProcessor.dem_to_TPI` and `tgp.DEMProcessor.dem_to_roughness`.
normalizer.
- **Interpolation**: Interpolation for raster data on specific cells which are usually nan cells. Once majority or mean value in the filter (convolution) are prefered value for interpolation, `tgp.Interpolation.majority_interpolation`, `tgp.Interpolation.mean_interpolation` are written in numba to speed up the process. If Inverse Distance Weight (IDW) method is appropriate, `tgp.Interpolation.gdal_fillnodata` impolemented by GDAL can be called.

- **Normalizer**: Normalize the Image data for model training or plotting. Normalizer can be initialize from `normalizer = tgp.Normalizer()`. Function `normalizer.fit_transform()` can help to normalize the data. Function `normalizer.clip_by_percentage` can be used to clip the head and tail of the data to avoid the outlier affecting plotting.

- **SplittedImage**: Split raster images for machine learning model training. Use `splitted_image = tgp.SplittedImage(raster, box_size, step_size=step_size)` to initialize SplittedImage object. SplittedImage object have `n_steps_h`, `n_steps_w`, `padded_rows`, `padded_cols`, `shape`, `n_splitted_images`, `padded_image` attributes. Function `splitted_image.apply()` can be used to process all splitted images using the funtion. Function `splitted_image.get_geo_attribute()` helps to get the vector of all splitted images and return GeoDataFrame object. When the prediction on each image is done, `splitted_image.write_splitted_images()` can be called to combine the prediction results on each splitted images to have the same size as original raster image.

- **TypeCast**: Mapping the data type betyween gdal and numpy, and convert the gdal data type from integer to readable string. Because gdal use integer to represent defferent data types, `tgp.get_gdaldtype_name()` helps to convert the integer to its data type name in string. Also, once converting the data type between numpy and gdal is required, `tgp.gdaldtype_to_npdtype` and `tgp.npdtype_to_gdaldtype` can help.

- **io**: Create, read and update the raster from the raster file. Use `tgp.read_raster` to read raster file as Raster object. Functions `tgp.get_raster_info` and `tgp.get_raster_extent` can be used when you don't want to read all digital value of the raster into the memory. Function `tgp.update_raster_info` can used to update the infomation of the raster file such as projection and geo_transform. Finally, if you want to get the testing file, `tgp.get_testing_fp` can help.

<!-- 6. AeroTriangulation: Do the aero-triangulation calculation.
10. GisIO: Some file-based gis functions. -->

# Contributor
## Author
- [GoatWang/王選仲](https://github.com/GoatWang), AI Engineer from Thinktron
- [DavidHuang/黃梓育](https://github.com/moonstarsky37)(聯絡人), AI Engineer from Thinktron
- [Funskie/方子齊](https://github.com/Funskie), AI Engineer from Thinktron

## Domain Instructor 
- 沈哲緯, Tech Lead of Thinktron
- [YuHsiang/王禹翔](https://github.com/b6100111524)(聯絡人), Remote Sensing Engineer, Section Manager from Thinktron
- 周立生, RD Engineer, Section Manager from Thinktron
- 鄧澤揚, RD Engineer from Thinktron

# Getting Started
To get start, please see [GettingStarted.ipynb](https://github.com/thinktron/TronGisPy/blob/master/GettingStarted.ipynb).

# Install
## Python Version
Python3.6 and Python3.7 is tested.

## Windows
1. Install preinstalls from pre-build wheel package
    - Python3.6
        - [GDAL==3.0.4](https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal)
        - [Fiona==1.8.13](https://www.lfd.uci.edu/~gohlke/pythonlibs/#fiona)
        - [Shapely==1.6.4.post2](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)
        - [geopandas==0.7.0](https://www.lfd.uci.edu/~gohlke/pythonlibs/#geopandas)
        - [Rtree==0.9.4](https://www.lfd.uci.edu/~gohlke/pythonlibs/#rtree)
        - [opencv_python>=4.1.2](https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv)
    - Python3.7
        - [GDAL==3.3.1](https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal)
        - [Fiona==1.8.20](https://www.lfd.uci.edu/~gohlke/pythonlibs/#fiona)
        - [Shapely==1.7.1](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)
        - [geopandas==0.9.0](https://www.lfd.uci.edu/~gohlke/pythonlibs/#geopandas)
        - [Rtree==0.9.7](https://www.lfd.uci.edu/~gohlke/pythonlibs/#rtree)
        - [opencv_python==4.5.3](https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv)

2. Install TronGisPy
    ```
    pip install TronGisPy
    ```

## Linux
- Python3.6
    1. Build GDAL==3.0.4 by yourself
    2. Build opencv by yourself
    3. install other preinstalls from public pypi server
    ```
    pip install GDAL==3.0.4 Fiona==1.8.13 Shapely==1.6.4.post2 geopandas==0.7.0 Rtree>=0.9.4
    ```
    4. Install TronGisPy
    ```
    pip install TronGisPy
    ```

- Python3.7
    1. Build GDAL==3.3.1 by yourself
    2. Build opencv by yourself
    3. install other preinstalls from public pypi server
    ```
    pip install GDAL==3.3.1 Fiona==1.8.20 Shapely==1.1.1 geopandas==0.9.0 Rtree==0.9.7
    ```
    4. Install TronGisPy
    ```
    pip install TronGisPy
    ```

## Docker
```
sudo docker run -it --rm jeremy4555/trongispy:latest
```

<!-- 
## Taiwan DataCube
1. uninstall gdal
```
pip uninstall gdal
```

2. install requirements for gdal
```
sudo apt-get install python3-dev build-essential libssl-dev libffi-dev libxml2-dev libxslt1-dev zlib1g-dev
```


3. add gdal path
```
echo "export CPLUS_INCLUDE_PATH=/usr/include/gdal" >> ~/.profile
echo "export C_INCLUDE_PATH=/usr/include/gdal" >> ~/.profile
source ~/.profile
```

4. install gdal
```
pip install GDAL==3.0.4
``` -->

# For Developer
## Build
```bash
python setup.py sdist bdist_wheel
```
<!-- ## Document Generation
0. [Installaion](https://sphinx-rtd-tutorial.readthedocs.io/en/latest/install.html)
```
pip install sphinx
pip install sphinx-rtd-theme
pip install numpydoc
```

1. generatate index.rst (https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html)
```
mkdir docs
cd docs
sphinx-quickstart
```

2. modify docs/source/conf.py (https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html)
```
vim source/conf.py
```
```
base_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.insert(0, os.path.abspath(os.path.join(base_dir, '..', '..')))

html_theme = "classic"
extensions = ['sphinx.ext.napoleon']
exclude_patterns = ['setup.py', 'req_generator.py', 'test.py']
```

3. generate TronGisPy rst
```
cd ..
python clean_docs_source.py
sphinx-apidoc --force --separate --module-first -o docs\source .
```

4. generate html
```
cd docs
make clean
make html
``` -->

## Docker Build
```
sudo docker build -t <dockerhub_id>/trongispy:latest -< Dockerfile
```

# Reference
1. [Logo](https://github.com/thinktron/TronGisPy/blob/master/static/trongispy.01-01.png)


# For Thinktron Worker
## Install on Windows
1. Install preinstall thinktron pypi server
```
# python36
pip install -U --index-url http://192.168.0.128:28181/simple --trusted-host 192.168.0.128 GDAL>=3.0.4 Fiona>=1.8.13 Shapely>=1.6.4.post2 geopandas>=0.7.0 Rtree>=0.9.4 opencv_python>=4.1.2

# python37
pip install pyproj
pip install -U --index-url http://192.168.0.128:28181/simple --trusted-host 192.168.0.128 GDAL Fiona Shapely geopandas Rtree opencv_python
```

2. Install TronGisPy from thinktron pypi server (Windows)
```
pip install TronGisPy 
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/thinktron/TronGisPy",
    "name": "TronGisPy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Thinktron",
    "author_email": "jeremywang@thinktronltd.com, moon.starsky37@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/fb/2d/c64277d9d337be31e9a7eb8d2e1de5ba1d655e3317788e1acccc77cedc27/TronGisPy-1.4.8.tar.gz",
    "platform": null,
    "description": "![TronGisPy](https://raw.githubusercontent.com/thinktron/TronGisPy/master/static/trongispy.02-01.png)\n\n# Introduction\nTronGisPy aims to automate the whole GIS process on raster data using python interface. To get start, please see [GettingStarted.ipynb](https://github.com/thinktron/TronGisPy/blob/master/GettingStarted.ipynb). The main module are listed below:\n\n- **Raster**: This module is Main class in TronGisPy. Use `ras = tgp.read_raster('<file_path>')` to read the file as Raster object. A Raster object contains all required attribute for a gis raster file such as *.tif* or *.geotiff* file including digital number for each pixel (`ras.data`), number of rows (`ras.rows`), number of columns (`ras.cols`), number of bands (`ras.bands`), geo_transform (`ras.geo_transform`), projection (`ras.projection`), no_data_value and metadata. The Raster object can also be plot with GeoDataFrame(shapefile) on the same canvas using `ras.plot()`. Functions like `ras.reproject()`, `ras.remap()` and `ras.refine_resolution()` are useful functions.\n\n- **CRS**: Convert the projection sys between well known text (WKT) and epsg(`tgp.epsg_to_wkt`, `tgp.wkt_to_epsg`). Convert the indexing sys tem between numpy index and coordinate system(`tgp.coords_to_npidxs`, `tgp.npidxs_to_coords`).\n\n- **ShapeGrid**: Interaction between raster and vector data including `tgp.ShapeGrid.rasterize_layer`, `tgp.ShapeGrid.rasterize_layer_by_ref_raster`, `tgp.ShapeGrid.vectorize_layer`, `tgp.ShapeGrid.clip_raster_with_polygon` and `tgp.ShapeGrid.clip_raster_with_extent`.\n\n- **DEMProcessor**: General dem processing functions including `tgp.DEMProcessor.dem_to_hillshade`, `tgp.DEMProcessor.dem_to_slope`, `tgp.DEMProcessor.dem_to_aspect`, `tgp.DEMProcessor.dem_to_TRI`, `tgp.DEMProcessor.dem_to_TPI` and `tgp.DEMProcessor.dem_to_roughness`.\nnormalizer.\n- **Interpolation**: Interpolation for raster data on specific cells which are usually nan cells. Once majority or mean value in the filter (convolution) are prefered value for interpolation, `tgp.Interpolation.majority_interpolation`, `tgp.Interpolation.mean_interpolation` are written in numba to speed up the process. If Inverse Distance Weight (IDW) method is appropriate, `tgp.Interpolation.gdal_fillnodata` impolemented by GDAL can be called.\n\n- **Normalizer**: Normalize the Image data for model training or plotting. Normalizer can be initialize from `normalizer = tgp.Normalizer()`. Function `normalizer.fit_transform()` can help to normalize the data. Function `normalizer.clip_by_percentage` can be used to clip the head and tail of the data to avoid the outlier affecting plotting.\n\n- **SplittedImage**: Split raster images for machine learning model training. Use `splitted_image = tgp.SplittedImage(raster, box_size, step_size=step_size)` to initialize SplittedImage object. SplittedImage object have `n_steps_h`, `n_steps_w`, `padded_rows`, `padded_cols`, `shape`, `n_splitted_images`, `padded_image` attributes. Function `splitted_image.apply()` can be used to process all splitted images using the funtion. Function `splitted_image.get_geo_attribute()` helps to get the vector of all splitted images and return GeoDataFrame object. When the prediction on each image is done, `splitted_image.write_splitted_images()` can be called to combine the prediction results on each splitted images to have the same size as original raster image.\n\n- **TypeCast**: Mapping the data type betyween gdal and numpy, and convert the gdal data type from integer to readable string. Because gdal use integer to represent defferent data types, `tgp.get_gdaldtype_name()` helps to convert the integer to its data type name in string. Also, once converting the data type between numpy and gdal is required, `tgp.gdaldtype_to_npdtype` and `tgp.npdtype_to_gdaldtype` can help.\n\n- **io**: Create, read and update the raster from the raster file. Use `tgp.read_raster` to read raster file as Raster object. Functions `tgp.get_raster_info` and `tgp.get_raster_extent` can be used when you don't want to read all digital value of the raster into the memory. Function `tgp.update_raster_info` can used to update the infomation of the raster file such as projection and geo_transform. Finally, if you want to get the testing file, `tgp.get_testing_fp` can help.\n\n<!-- 6. AeroTriangulation: Do the aero-triangulation calculation.\n10. GisIO: Some file-based gis functions. -->\n\n# Contributor\n## Author\n- [GoatWang/\u738b\u9078\u4ef2](https://github.com/GoatWang), AI Engineer from Thinktron\n- [DavidHuang/\u9ec3\u6893\u80b2](https://github.com/moonstarsky37)(\u806f\u7d61\u4eba), AI Engineer from Thinktron\n- [Funskie/\u65b9\u5b50\u9f4a](https://github.com/Funskie), AI Engineer from Thinktron\n\n## Domain Instructor \n- \u6c88\u54f2\u7def, Tech Lead of Thinktron\n- [YuHsiang/\u738b\u79b9\u7fd4](https://github.com/b6100111524)(\u806f\u7d61\u4eba), Remote Sensing Engineer, Section Manager from Thinktron\n- \u5468\u7acb\u751f, RD Engineer, Section Manager from Thinktron\n- \u9127\u6fa4\u63da, RD Engineer from Thinktron\n\n# Getting Started\nTo get start, please see [GettingStarted.ipynb](https://github.com/thinktron/TronGisPy/blob/master/GettingStarted.ipynb).\n\n# Install\n## Python Version\nPython3.6 and Python3.7 is tested.\n\n## Windows\n1. Install preinstalls from pre-build wheel package\n    - Python3.6\n        - [GDAL==3.0.4](https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal)\n        - [Fiona==1.8.13](https://www.lfd.uci.edu/~gohlke/pythonlibs/#fiona)\n        - [Shapely==1.6.4.post2](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)\n        - [geopandas==0.7.0](https://www.lfd.uci.edu/~gohlke/pythonlibs/#geopandas)\n        - [Rtree==0.9.4](https://www.lfd.uci.edu/~gohlke/pythonlibs/#rtree)\n        - [opencv_python>=4.1.2](https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv)\n    - Python3.7\n        - [GDAL==3.3.1](https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal)\n        - [Fiona==1.8.20](https://www.lfd.uci.edu/~gohlke/pythonlibs/#fiona)\n        - [Shapely==1.7.1](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)\n        - [geopandas==0.9.0](https://www.lfd.uci.edu/~gohlke/pythonlibs/#geopandas)\n        - [Rtree==0.9.7](https://www.lfd.uci.edu/~gohlke/pythonlibs/#rtree)\n        - [opencv_python==4.5.3](https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv)\n\n2. Install TronGisPy\n    ```\n    pip install TronGisPy\n    ```\n\n## Linux\n- Python3.6\n    1. Build GDAL==3.0.4 by yourself\n    2. Build opencv by yourself\n    3. install other preinstalls from public pypi server\n    ```\n    pip install GDAL==3.0.4 Fiona==1.8.13 Shapely==1.6.4.post2 geopandas==0.7.0 Rtree>=0.9.4\n    ```\n    4. Install TronGisPy\n    ```\n    pip install TronGisPy\n    ```\n\n- Python3.7\n    1. Build GDAL==3.3.1 by yourself\n    2. Build opencv by yourself\n    3. install other preinstalls from public pypi server\n    ```\n    pip install GDAL==3.3.1 Fiona==1.8.20 Shapely==1.1.1 geopandas==0.9.0 Rtree==0.9.7\n    ```\n    4. Install TronGisPy\n    ```\n    pip install TronGisPy\n    ```\n\n## Docker\n```\nsudo docker run -it --rm jeremy4555/trongispy:latest\n```\n\n<!-- \n## Taiwan DataCube\n1. uninstall gdal\n```\npip uninstall gdal\n```\n\n2. install requirements for gdal\n```\nsudo apt-get install python3-dev build-essential libssl-dev libffi-dev libxml2-dev libxslt1-dev zlib1g-dev\n```\n\n\n3. add gdal path\n```\necho \"export CPLUS_INCLUDE_PATH=/usr/include/gdal\" >> ~/.profile\necho \"export C_INCLUDE_PATH=/usr/include/gdal\" >> ~/.profile\nsource ~/.profile\n```\n\n4. install gdal\n```\npip install GDAL==3.0.4\n``` -->\n\n# For Developer\n## Build\n```bash\npython setup.py sdist bdist_wheel\n```\n<!-- ## Document Generation\n0. [Installaion](https://sphinx-rtd-tutorial.readthedocs.io/en/latest/install.html)\n```\npip install sphinx\npip install sphinx-rtd-theme\npip install numpydoc\n```\n\n1. generatate index.rst (https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html)\n```\nmkdir docs\ncd docs\nsphinx-quickstart\n```\n\n2. modify docs/source/conf.py (https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html)\n```\nvim source/conf.py\n```\n```\nbase_dir = os.path.dirname(os.path.realpath(__file__))\nsys.path.insert(0, os.path.abspath(os.path.join(base_dir, '..', '..')))\n\nhtml_theme = \"classic\"\nextensions = ['sphinx.ext.napoleon']\nexclude_patterns = ['setup.py', 'req_generator.py', 'test.py']\n```\n\n3. generate TronGisPy rst\n```\ncd ..\npython clean_docs_source.py\nsphinx-apidoc --force --separate --module-first -o docs\\source .\n```\n\n4. generate html\n```\ncd docs\nmake clean\nmake html\n``` -->\n\n## Docker Build\n```\nsudo docker build -t <dockerhub_id>/trongispy:latest -< Dockerfile\n```\n\n# Reference\n1. [Logo](https://github.com/thinktron/TronGisPy/blob/master/static/trongispy.01-01.png)\n\n\n# For Thinktron Worker\n## Install on Windows\n1. Install preinstall thinktron pypi server\n```\n# python36\npip install -U --index-url http://192.168.0.128:28181/simple --trusted-host 192.168.0.128 GDAL>=3.0.4 Fiona>=1.8.13 Shapely>=1.6.4.post2 geopandas>=0.7.0 Rtree>=0.9.4 opencv_python>=4.1.2\n\n# python37\npip install pyproj\npip install -U --index-url http://192.168.0.128:28181/simple --trusted-host 192.168.0.128 GDAL Fiona Shapely geopandas Rtree opencv_python\n```\n\n2. Install TronGisPy from thinktron pypi server (Windows)\n```\npip install TronGisPy \n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Gis raster data processing tool",
    "version": "1.4.8",
    "project_urls": {
        "Homepage": "https://github.com/thinktron/TronGisPy"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d2c1ccc6c87e4f40383572f5078f24f9c393561c43de2a29e5f997049fe7b4a0",
                "md5": "d3b56e6bb9900bb51c046ad9e0338f3a",
                "sha256": "54380cd67ee99751656a889cbfa782d8fe53c3cd90f70ba2b2b9bf0e36d2da04"
            },
            "downloads": -1,
            "filename": "TronGisPy-1.4.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d3b56e6bb9900bb51c046ad9e0338f3a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 20775206,
            "upload_time": "2023-12-25T13:59:16",
            "upload_time_iso_8601": "2023-12-25T13:59:16.369093Z",
            "url": "https://files.pythonhosted.org/packages/d2/c1/ccc6c87e4f40383572f5078f24f9c393561c43de2a29e5f997049fe7b4a0/TronGisPy-1.4.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fb2dc64277d9d337be31e9a7eb8d2e1de5ba1d655e3317788e1acccc77cedc27",
                "md5": "c744425515a483cf29c7c368c4afe7eb",
                "sha256": "e900f7bfd0bfe7cf55db16c4541e14370aa6a7d97490ad212f0f12501a7c14ce"
            },
            "downloads": -1,
            "filename": "TronGisPy-1.4.8.tar.gz",
            "has_sig": false,
            "md5_digest": "c744425515a483cf29c7c368c4afe7eb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 20615345,
            "upload_time": "2023-12-25T13:59:19",
            "upload_time_iso_8601": "2023-12-25T13:59:19.632057Z",
            "url": "https://files.pythonhosted.org/packages/fb/2d/c64277d9d337be31e9a7eb8d2e1de5ba1d655e3317788e1acccc77cedc27/TronGisPy-1.4.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-25 13:59:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "thinktron",
    "github_project": "TronGisPy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "affine",
            "specs": [
                [
                    "==",
                    "2.3.0"
                ]
            ]
        },
        {
            "name": "alabaster",
            "specs": [
                [
                    "==",
                    "0.7.12"
                ]
            ]
        },
        {
            "name": "astroid",
            "specs": [
                [
                    "==",
                    "2.4.2"
                ]
            ]
        },
        {
            "name": "attrs",
            "specs": [
                [
                    "==",
                    "19.3.0"
                ]
            ]
        },
        {
            "name": "autopep8",
            "specs": [
                [
                    "==",
                    "1.5.3"
                ]
            ]
        },
        {
            "name": "Babel",
            "specs": [
                [
                    "==",
                    "2.8.0"
                ]
            ]
        },
        {
            "name": "bleach",
            "specs": [
                [
                    "==",
                    "3.1.5"
                ]
            ]
        },
        {
            "name": "certifi",
            "specs": [
                [
                    "==",
                    "2020.4.5.2"
                ]
            ]
        },
        {
            "name": "chardet",
            "specs": [
                [
                    "==",
                    "3.0.4"
                ]
            ]
        },
        {
            "name": "click",
            "specs": [
                [
                    "==",
                    "7.1.2"
                ]
            ]
        },
        {
            "name": "click-plugins",
            "specs": [
                [
                    "==",
                    "1.1.1"
                ]
            ]
        },
        {
            "name": "cligj",
            "specs": [
                [
                    "==",
                    "0.5.0"
                ]
            ]
        },
        {
            "name": "colorama",
            "specs": [
                [
                    "==",
                    "0.4.3"
                ]
            ]
        },
        {
            "name": "cycler",
            "specs": [
                [
                    "==",
                    "0.10.0"
                ]
            ]
        },
        {
            "name": "decorator",
            "specs": [
                [
                    "==",
                    "4.4.2"
                ]
            ]
        },
        {
            "name": "descartes",
            "specs": [
                [
                    "==",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "docutils",
            "specs": [
                [
                    "==",
                    "0.16"
                ]
            ]
        },
        {
            "name": "Fiona",
            "specs": [
                [
                    "==",
                    "1.8.13"
                ]
            ]
        },
        {
            "name": "GDAL",
            "specs": [
                [
                    "==",
                    "3.0.4"
                ]
            ]
        },
        {
            "name": "geopandas",
            "specs": [
                [
                    "==",
                    "0.7.0"
                ]
            ]
        },
        {
            "name": "idna",
            "specs": [
                [
                    "==",
                    "2.9"
                ]
            ]
        },
        {
            "name": "imagesize",
            "specs": [
                [
                    "==",
                    "1.2.0"
                ]
            ]
        },
        {
            "name": "importlib-metadata",
            "specs": [
                [
                    "==",
                    "1.6.1"
                ]
            ]
        },
        {
            "name": "isort",
            "specs": [
                [
                    "==",
                    "4.3.21"
                ]
            ]
        },
        {
            "name": "Jinja2",
            "specs": [
                [
                    "==",
                    "2.11.2"
                ]
            ]
        },
        {
            "name": "joblib",
            "specs": [
                [
                    "==",
                    "0.15.1"
                ]
            ]
        },
        {
            "name": "keyring",
            "specs": [
                [
                    "==",
                    "21.2.1"
                ]
            ]
        },
        {
            "name": "kiwisolver",
            "specs": [
                [
                    "==",
                    "1.2.0"
                ]
            ]
        },
        {
            "name": "lazy-object-proxy",
            "specs": [
                [
                    "==",
                    "1.4.3"
                ]
            ]
        },
        {
            "name": "llvmlite",
            "specs": [
                [
                    "==",
                    "0.32.1"
                ]
            ]
        },
        {
            "name": "MarkupSafe",
            "specs": [
                [
                    "==",
                    "1.1.1"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.2.1"
                ]
            ]
        },
        {
            "name": "mccabe",
            "specs": [
                [
                    "==",
                    "0.6.1"
                ]
            ]
        },
        {
            "name": "munch",
            "specs": [
                [
                    "==",
                    "2.5.0"
                ]
            ]
        },
        {
            "name": "numba",
            "specs": [
                [
                    "==",
                    "0.49.1"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.18.5"
                ]
            ]
        },
        {
            "name": "numpydoc",
            "specs": [
                [
                    "==",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "opencv-python",
            "specs": [
                [
                    "==",
                    "4.1.2"
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": [
                [
                    "==",
                    "20.4"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "1.0.4"
                ]
            ]
        },
        {
            "name": "pkginfo",
            "specs": [
                [
                    "==",
                    "1.5.0.1"
                ]
            ]
        },
        {
            "name": "pycodestyle",
            "specs": [
                [
                    "==",
                    "2.6.0"
                ]
            ]
        },
        {
            "name": "Pygments",
            "specs": [
                [
                    "==",
                    "2.6.1"
                ]
            ]
        },
        {
            "name": "pylint",
            "specs": [
                [
                    "==",
                    "2.5.3"
                ]
            ]
        },
        {
            "name": "pyparsing",
            "specs": [
                [
                    "==",
                    "2.4.7"
                ]
            ]
        },
        {
            "name": "pyproj",
            "specs": [
                [
                    "==",
                    "2.6.1.post1"
                ]
            ]
        },
        {
            "name": "python-dateutil",
            "specs": [
                [
                    "==",
                    "2.8.1"
                ]
            ]
        },
        {
            "name": "pytz",
            "specs": [
                [
                    "==",
                    "2020.1"
                ]
            ]
        },
        {
            "name": "pywin32-ctypes",
            "specs": [
                [
                    "==",
                    "0.2.0"
                ]
            ]
        },
        {
            "name": "readme-renderer",
            "specs": [
                [
                    "==",
                    "26.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    "==",
                    "2.23.0"
                ]
            ]
        },
        {
            "name": "requests-toolbelt",
            "specs": [
                [
                    "==",
                    "0.9.1"
                ]
            ]
        },
        {
            "name": "Rtree",
            "specs": [
                [
                    "==",
                    "0.9.4"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "0.23.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.4.1"
                ]
            ]
        },
        {
            "name": "Shapely",
            "specs": [
                [
                    "==",
                    "1.6.4.post2"
                ]
            ]
        },
        {
            "name": "six",
            "specs": [
                [
                    "==",
                    "1.15.0"
                ]
            ]
        },
        {
            "name": "snowballstemmer",
            "specs": [
                [
                    "==",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "Sphinx",
            "specs": [
                [
                    "==",
                    "3.2.1"
                ]
            ]
        },
        {
            "name": "sphinx-rtd-theme",
            "specs": [
                [
                    "==",
                    "0.5.0"
                ]
            ]
        },
        {
            "name": "sphinxcontrib-applehelp",
            "specs": [
                [
                    "==",
                    "1.0.2"
                ]
            ]
        },
        {
            "name": "sphinxcontrib-devhelp",
            "specs": [
                [
                    "==",
                    "1.0.2"
                ]
            ]
        },
        {
            "name": "sphinxcontrib-htmlhelp",
            "specs": [
                [
                    "==",
                    "1.0.3"
                ]
            ]
        },
        {
            "name": "sphinxcontrib-jsmath",
            "specs": [
                [
                    "==",
                    "1.0.1"
                ]
            ]
        },
        {
            "name": "sphinxcontrib-qthelp",
            "specs": [
                [
                    "==",
                    "1.0.3"
                ]
            ]
        },
        {
            "name": "sphinxcontrib-serializinghtml",
            "specs": [
                [
                    "==",
                    "1.1.4"
                ]
            ]
        },
        {
            "name": "threadpoolctl",
            "specs": [
                [
                    "==",
                    "2.1.0"
                ]
            ]
        },
        {
            "name": "toml",
            "specs": [
                [
                    "==",
                    "0.10.1"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "==",
                    "4.46.1"
                ]
            ]
        },
        {
            "name": "twine",
            "specs": [
                [
                    "==",
                    "3.1.1"
                ]
            ]
        },
        {
            "name": "typed-ast",
            "specs": [
                [
                    "==",
                    "1.4.1"
                ]
            ]
        },
        {
            "name": "urllib3",
            "specs": [
                [
                    "==",
                    "1.25.9"
                ]
            ]
        },
        {
            "name": "webencodings",
            "specs": [
                [
                    "==",
                    "0.5.1"
                ]
            ]
        },
        {
            "name": "wrapt",
            "specs": [
                [
                    "==",
                    "1.12.1"
                ]
            ]
        },
        {
            "name": "zipp",
            "specs": [
                [
                    "==",
                    "3.1.0"
                ]
            ]
        }
    ],
    "lcname": "trongispy"
}
        
Elapsed time: 0.36064s