abgpt


Nameabgpt JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/deskk/AbGPT
SummaryAbGPT: De Novo B-Cell Receptor Design via Generative Language Modeling
upload_time2024-08-26 19:47:12
maintainerNone
docs_urlNone
authorDesmond Kuan, Amir Barati Farimani
requires_python>=3.6
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AbGPT
Official repository for AbGPT: [De Novo B-Cell Receptor Design via Generative Language Modeling](https://www.biorxiv.org/xxxxxxxxxx).

## Setup
To use AbGPT, install via pip:
```bash
pip install abgpt
```

<!-- Alternatively, you can clone this repository and install the package locally:
```bash
$ git clone git@github.com:BaratiLab/AbGPT.git 
$ pip install AbGPT
``` -->

## Command line usage

### Full sequence generation
To generate 1000 light chain sequences starting with "QLQL":
```bash
abgpt_generate --chain_type light --starting_residue QLQL --num_seqs 1000
```

To generate a BCR library with 1000 sequences for a number of starting residue (e.g., "QVQL", "EVQL", "VQLV") in the heavy chain:
```bash
abgpt_generate --chain_type heavy --starting_residue QVQL,EVQL,VQLV --num_seqs_each_starting_residue 1000
```

To generate a BCR library with 1000 sequences for a number of starting residue (e.g., "EIVL", "EIVM", "DIQM") in the light chain:
```bash
abgpt_generate --chain_type light --starting_residue EIVL,EIVM,DIQM --num_seqs_each_starting_residue 1000
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/deskk/AbGPT",
    "name": "abgpt",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Desmond Kuan, Amir Barati Farimani",
    "author_email": "barati@cmu.edu",
    "download_url": "https://files.pythonhosted.org/packages/b7/72/3866bfcf6b5dba4dd85cb67293a0658a48006ac35127fa01b0c7c3ef7ffa/abgpt-0.1.2.tar.gz",
    "platform": null,
    "description": "# AbGPT\nOfficial repository for AbGPT: [De Novo B-Cell Receptor Design via Generative Language Modeling](https://www.biorxiv.org/xxxxxxxxxx).\n\n## Setup\nTo use AbGPT, install via pip:\n```bash\npip install abgpt\n```\n\n<!-- Alternatively, you can clone this repository and install the package locally:\n```bash\n$ git clone git@github.com:BaratiLab/AbGPT.git \n$ pip install AbGPT\n``` -->\n\n## Command line usage\n\n### Full sequence generation\nTo generate 1000 light chain sequences starting with \"QLQL\":\n```bash\nabgpt_generate --chain_type light --starting_residue QLQL --num_seqs 1000\n```\n\nTo generate a BCR library with 1000 sequences for a number of starting residue (e.g., \"QVQL\", \"EVQL\", \"VQLV\") in the heavy chain:\n```bash\nabgpt_generate --chain_type heavy --starting_residue QVQL,EVQL,VQLV --num_seqs_each_starting_residue 1000\n```\n\nTo generate a BCR library with 1000 sequences for a number of starting residue (e.g., \"EIVL\", \"EIVM\", \"DIQM\") in the light chain:\n```bash\nabgpt_generate --chain_type light --starting_residue EIVL,EIVM,DIQM --num_seqs_each_starting_residue 1000\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "AbGPT: De Novo B-Cell Receptor Design via Generative Language Modeling",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/deskk/AbGPT"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "38907a15e437363a9e059a1a20a5854be78acfb00a811097d2bdc7f8b227a5f4",
                "md5": "e4e39ef8aed432ef0d178659cc1fe9f7",
                "sha256": "e697dd804731eff6fa633e06e5fe33a29c605cdca36a95a03492ea847fbecfe0"
            },
            "downloads": -1,
            "filename": "abgpt-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e4e39ef8aed432ef0d178659cc1fe9f7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 4923,
            "upload_time": "2024-08-26T19:47:11",
            "upload_time_iso_8601": "2024-08-26T19:47:11.264532Z",
            "url": "https://files.pythonhosted.org/packages/38/90/7a15e437363a9e059a1a20a5854be78acfb00a811097d2bdc7f8b227a5f4/abgpt-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b7723866bfcf6b5dba4dd85cb67293a0658a48006ac35127fa01b0c7c3ef7ffa",
                "md5": "7d4ac5b6dbdd2a0c109e9006482a4571",
                "sha256": "64ecf6ee264c41295dd629b7990b7c0db6834b568d237800e839b8bd39a6028c"
            },
            "downloads": -1,
            "filename": "abgpt-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "7d4ac5b6dbdd2a0c109e9006482a4571",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 4456,
            "upload_time": "2024-08-26T19:47:12",
            "upload_time_iso_8601": "2024-08-26T19:47:12.661387Z",
            "url": "https://files.pythonhosted.org/packages/b7/72/3866bfcf6b5dba4dd85cb67293a0658a48006ac35127fa01b0c7c3ef7ffa/abgpt-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-26 19:47:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "deskk",
    "github_project": "AbGPT",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "abgpt"
}
        
Elapsed time: 0.32545s