
A collection of tools to analyze and visualize atmospheric aerosol and ion data.
## Installation
```shell
pip install aerosol-functions
```
## Documentation
See [here](https://jlpl.github.io/aerosol-functions/)
## Using the `aerosol-analyzer`
The `aerosol-analyzer` is a GUI application where one can visualize and analyze aerosol number size distribution data. The application runs in the browser using a bokeh server.
A general workflow is roughly the following:
1. Load aerosol number size distribution data from a CSV file. Note that it is recommended to first combine all the data into a single file before opening it in the `aerosol-analyzer`. In the CSV file:
- First column: timestamps (e.g. in the format YYYY-MM-DD HH:MM:SS)
- First row: particle diameters representing each size bin
- The rest of the data should contain the number size distribution
2. Draw regions of interest (ROIs) on the number size distribution using the `FreehandDrawTool`
3. Select ROIs using the `TapTool` and do selected calculations on the data inside the ROIs. For example one can:
- Fit (mixture) log-normal distributions on the selected size distributions
4. Save the ROIs including the calculated quantities to a JSON formatted file.
5. Continue working on a project by loading an already saved ROI file.
To start the application type on the command line:
```
aerosol-analyzer
```
Below is a screenshot from the application
Raw data
{
"_id": null,
"home_page": "https://github.com/jlpl/aerosol-functions",
"name": "aerosol-functions",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Janne Lampilahti",
"author_email": "janne.lampilahti@helsinki.fi",
"download_url": "https://files.pythonhosted.org/packages/6b/2b/265902dfd1bec11d2a301d6addc7f0cf997467132f46d9c09c51d08223b1/aerosol-functions-0.1.2.tar.gz",
"platform": null,
"description": "\n\nA collection of tools to analyze and visualize atmospheric aerosol and ion data.\n\n## Installation\n```shell\npip install aerosol-functions\n```\n\n## Documentation\nSee [here](https://jlpl.github.io/aerosol-functions/)\n\n## Using the `aerosol-analyzer`\nThe `aerosol-analyzer` is a GUI application where one can visualize and analyze aerosol number size distribution data. The application runs in the browser using a bokeh server.\n\nA general workflow is roughly the following:\n1. Load aerosol number size distribution data from a CSV file. Note that it is recommended to first combine all the data into a single file before opening it in the `aerosol-analyzer`. In the CSV file:\n - First column: timestamps (e.g. in the format YYYY-MM-DD HH:MM:SS)\n - First row: particle diameters representing each size bin\n - The rest of the data should contain the number size distribution\n2. Draw regions of interest (ROIs) on the number size distribution using the `FreehandDrawTool`\n3. Select ROIs using the `TapTool` and do selected calculations on the data inside the ROIs. For example one can:\n - Fit (mixture) log-normal distributions on the selected size distributions\n4. Save the ROIs including the calculated quantities to a JSON formatted file.\n5. Continue working on a project by loading an already saved ROI file.\n\nTo start the application type on the command line:\n```\naerosol-analyzer\n```\n\nBelow is a screenshot from the application\n",
"bugtrack_url": null,
"license": null,
"summary": "Functions to analyze atmospheric aerosol data",
"version": "0.1.2",
"project_urls": {
"Homepage": "https://github.com/jlpl/aerosol-functions"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a82f2074a6e9cc508a18ef3d79be1bef447b632fdb26ec332e66f0b00f4c556c",
"md5": "dded32b3330f96322ed8881c1a4601ef",
"sha256": "1292b2c4c66ece4006bf6ba30e37d8856a1b3c5881be49c8e9ad6c15459ace28"
},
"downloads": -1,
"filename": "aerosol_functions-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "dded32b3330f96322ed8881c1a4601ef",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 19568,
"upload_time": "2024-08-12T19:06:20",
"upload_time_iso_8601": "2024-08-12T19:06:20.532878Z",
"url": "https://files.pythonhosted.org/packages/a8/2f/2074a6e9cc508a18ef3d79be1bef447b632fdb26ec332e66f0b00f4c556c/aerosol_functions-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6b2b265902dfd1bec11d2a301d6addc7f0cf997467132f46d9c09c51d08223b1",
"md5": "bfd7dfbf17465370595a7e784f6270e6",
"sha256": "0cbb62aeaddebd7f08ba0f3fdf5417931111aa884ac96a0ce80acc4f369aa8dd"
},
"downloads": -1,
"filename": "aerosol-functions-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "bfd7dfbf17465370595a7e784f6270e6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 86012,
"upload_time": "2024-08-12T19:06:22",
"upload_time_iso_8601": "2024-08-12T19:06:22.198515Z",
"url": "https://files.pythonhosted.org/packages/6b/2b/265902dfd1bec11d2a301d6addc7f0cf997467132f46d9c09c51d08223b1/aerosol-functions-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-12 19:06:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jlpl",
"github_project": "aerosol-functions",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "aerosol-functions"
}