======================
Antgo
======================
.. image:: https://raw.githubusercontent.com/jianzfb/antgo/master/antgo/resource/static/card.png
:alt: Antgo
Target
----------------------
Antgo is a machine learning experiment manage platform, which has been integrated deeply with MLTalker.
Antgo provides a one-stop model development, deployment, analyze, auto-optimize and manage environment.
Installation
----------------------
1. (RECOMMENDED) use docker
`docker environment <docker/README.md>`__.
2. install from pip
pip install antgo
3. install from source
1. git clone https://github.com/jianzfb/antgo.git
2. cd antgo
3. pip install -r requirements.txt
4. python setup.py build_ext install
Register
-----------------------
Register in `MLTalker <http://www.mltalker.com/>`__.
.. image:: https://raw.githubusercontent.com/jianzfb/antgo/master/antgo/resource/static/register.png
:alt: Antgo and MLTalker
All user experiment records would be managed by MLTalker in user's personal page.
Quick Example
-----------------------
1.step create mvp code(cifar10 classification task)
antgo create mvp --name=cifar10
2.step start training process
python3 ./cifar10/main.py --exp=cifar10 --gpu-id=0 --process=train
3.step check training log
in ./output/cifar10/output/checkpoint
4.step export onnx model
python3 ./cifar10/main.py --exp=cifar10 --checkpoint=./output/cifar10/output/checkpoint/epoch_1500.pth --process=export
Raw data
{
"_id": null,
"home_page": "https://github.com/jianzfb/antgo",
"name": "antgo",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "jian",
"author_email": "jian@mltalker.com",
"download_url": "https://files.pythonhosted.org/packages/d4/ac/c040f6ebdf6dd51e95d208ae1c3cabda60eef6e46813702f801babfef8a4/antgo-0.1.24.tar.gz",
"platform": null,
"description": "======================\nAntgo\n======================\n\n.. image:: https://raw.githubusercontent.com/jianzfb/antgo/master/antgo/resource/static/card.png\n :alt: Antgo\n\nTarget\n----------------------\nAntgo is a machine learning experiment manage platform, which has been integrated deeply with MLTalker.\nAntgo provides a one-stop model development, deployment, analyze, auto-optimize and manage environment.\n\nInstallation\n----------------------\n1. (RECOMMENDED) use docker\n\n `docker environment <docker/README.md>`__.\n\n2. install from pip\n\n pip install antgo\n\n\n3. install from source\n\n 1. git clone https://github.com/jianzfb/antgo.git\n 2. cd antgo\n 3. pip install -r requirements.txt\n 4. python setup.py build_ext install\n\n\nRegister\n-----------------------\nRegister in `MLTalker <http://www.mltalker.com/>`__.\n\n.. image:: https://raw.githubusercontent.com/jianzfb/antgo/master/antgo/resource/static/register.png\n :alt: Antgo and MLTalker\n\nAll user experiment records would be managed by MLTalker in user's personal page.\n\n\nQuick Example\n-----------------------\n\n1.step create mvp code(cifar10 classification task)\n\n antgo create mvp --name=cifar10\n\n2.step start training process\n\n python3 ./cifar10/main.py --exp=cifar10 --gpu-id=0 --process=train\n\n3.step check training log\n\n in ./output/cifar10/output/checkpoint\n\n4.step export onnx model\n\n python3 ./cifar10/main.py --exp=cifar10 --checkpoint=./output/cifar10/output/checkpoint/epoch_1500.pth --process=export\n\n",
"bugtrack_url": null,
"license": "",
"summary": "machine learning experiment platform",
"version": "0.1.24",
"project_urls": {
"Homepage": "https://github.com/jianzfb/antgo"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d4acc040f6ebdf6dd51e95d208ae1c3cabda60eef6e46813702f801babfef8a4",
"md5": "7f619e7c2c2b131c557e42e3d1542bac",
"sha256": "55bbc9662a500194f67eb3929367854acbbb8afa6abf2c050c3a796ca2421eaa"
},
"downloads": -1,
"filename": "antgo-0.1.24.tar.gz",
"has_sig": false,
"md5_digest": "7f619e7c2c2b131c557e42e3d1542bac",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3498707,
"upload_time": "2023-07-08T10:38:42",
"upload_time_iso_8601": "2023-07-08T10:38:42.174833Z",
"url": "https://files.pythonhosted.org/packages/d4/ac/c040f6ebdf6dd51e95d208ae1c3cabda60eef6e46813702f801babfef8a4/antgo-0.1.24.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-08 10:38:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jianzfb",
"github_project": "antgo",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": [
[
"<=",
"1.23.0"
]
]
},
{
"name": "Pillow",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "six",
"specs": []
},
{
"name": "termcolor",
"specs": []
},
{
"name": "tqdm",
"specs": []
},
{
"name": "msgpack",
"specs": []
},
{
"name": "msgpack-numpy",
"specs": []
},
{
"name": "psutil",
"specs": []
},
{
"name": "jinja2",
"specs": []
},
{
"name": "pyyaml",
"specs": []
},
{
"name": "requests",
"specs": []
},
{
"name": "tornado",
"specs": []
},
{
"name": "beautifulsoup4",
"specs": []
},
{
"name": "imageio",
"specs": []
},
{
"name": "scikit-learn",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "prettytable",
"specs": []
},
{
"name": "opencv-contrib-python",
"specs": []
},
{
"name": "antvis",
"specs": []
},
{
"name": "qiniu",
"specs": []
},
{
"name": "pycocotools",
"specs": [
[
"==",
"2.0.2"
]
]
},
{
"name": "addict",
"specs": []
},
{
"name": "yapf",
"specs": []
},
{
"name": "timer",
"specs": []
},
{
"name": "thop",
"specs": []
},
{
"name": "torch",
"specs": []
},
{
"name": "torchvision",
"specs": []
},
{
"name": "imagesize",
"specs": []
},
{
"name": "tfrecord",
"specs": []
},
{
"name": "GitPython",
"specs": []
},
{
"name": "protobuf",
"specs": [
[
"==",
"3.20.0"
]
]
},
{
"name": "chumpy",
"specs": []
},
{
"name": "onnx",
"specs": []
},
{
"name": "onnxruntime",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "aligo",
"specs": []
},
{
"name": "python-multipart",
"specs": []
},
{
"name": "fastapi",
"specs": []
},
{
"name": "uvicorn",
"specs": []
},
{
"name": "httpx",
"specs": []
},
{
"name": "portalocker",
"specs": []
}
],
"lcname": "antgo"
}