auto-sklearn


Nameauto-sklearn JSON
Version 0.15.0 PyPI version JSON
download
home_pagehttps://automl.github.io/auto-sklearn
SummaryAutomated machine learning.
upload_time2022-09-20 10:30:34
maintainer
docs_urlNone
authorMatthias Feurer
requires_python>=3.7
licenseBSD3
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # auto-sklearn

**auto-sklearn** is an automated machine learning toolkit and a drop-in replacement for a [scikit-learn](https://scikit-learn.org) estimator.

Find the documentation **[here](https://automl.github.io/auto-sklearn/)**. Quick links:
  * [Installation Guide](https://automl.github.io/auto-sklearn/master/installation.html)
  * [Releases](https://automl.github.io/auto-sklearn/master/releases.html)
  * [Manual](https://automl.github.io/auto-sklearn/master/manual.html)
  * [Examples](https://automl.github.io/auto-sklearn/master/examples/index.html)
  * [API](https://automl.github.io/auto-sklearn/master/api.html)

## auto-sklearn in one image

![image](doc/images/askl_pipeline.png)

## auto-sklearn in four lines of code

```python
import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)
```

## Relevant publications

If you use auto-sklearn in scientific publications, we would appreciate citations.

**Efficient and Robust Automated Machine Learning**
*Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter*
Advances in Neural Information Processing Systems 28 (2015)

[Link](https://papers.neurips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf) to publication.
```
@inproceedings{feurer-neurips15a,
    title     = {Efficient and Robust Automated Machine Learning},
    author    = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and Springenberg, Jost and Blum, Manuel and Hutter, Frank},
    booktitle = {Advances in Neural Information Processing Systems 28 (2015)},
    pages     = {2962--2970},
    year      = {2015}
}
```

----------------------------------------

**Auto-Sklearn 2.0: The Next Generation**
*Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter**
arXiv:2007.04074 [cs.LG], 2020

[Link](https://arxiv.org/abs/2007.04074) to publication.
```
@article{feurer-arxiv20a,
    title     = {Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning},
    author    = {Feurer, Matthias and Eggensperger, Katharina and Falkner, Stefan and Lindauer, Marius and Hutter, Frank},
    booktitle = {arXiv:2007.04074 [cs.LG]},
    year      = {2020}
}
```

----------------------------------------

Also, have a look at the blog on [automl.org](https://automl.org) where we regularly release blogposts.
            

Raw data

            {
    "_id": null,
    "home_page": "https://automl.github.io/auto-sklearn",
    "name": "auto-sklearn",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Matthias Feurer",
    "author_email": "feurerm@informatik.uni-freiburg.de",
    "download_url": "https://files.pythonhosted.org/packages/e5/0f/abac227b48edd7f4d9309492b35bdb7a4f70d4d643a60244cac83fd96029/auto-sklearn-0.15.0.tar.gz",
    "platform": "Linux",
    "description": "# auto-sklearn\n\n**auto-sklearn** is an automated machine learning toolkit and a drop-in replacement for a [scikit-learn](https://scikit-learn.org) estimator.\n\nFind the documentation **[here](https://automl.github.io/auto-sklearn/)**. Quick links:\n  * [Installation Guide](https://automl.github.io/auto-sklearn/master/installation.html)\n  * [Releases](https://automl.github.io/auto-sklearn/master/releases.html)\n  * [Manual](https://automl.github.io/auto-sklearn/master/manual.html)\n  * [Examples](https://automl.github.io/auto-sklearn/master/examples/index.html)\n  * [API](https://automl.github.io/auto-sklearn/master/api.html)\n\n## auto-sklearn in one image\n\n![image](doc/images/askl_pipeline.png)\n\n## auto-sklearn in four lines of code\n\n```python\nimport autosklearn.classification\ncls = autosklearn.classification.AutoSklearnClassifier()\ncls.fit(X_train, y_train)\npredictions = cls.predict(X_test)\n```\n\n## Relevant publications\n\nIf you use auto-sklearn in scientific publications, we would appreciate citations.\n\n**Efficient and Robust Automated Machine Learning**\n*Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter*\nAdvances in Neural Information Processing Systems 28 (2015)\n\n[Link](https://papers.neurips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf) to publication.\n```\n@inproceedings{feurer-neurips15a,\n    title     = {Efficient and Robust Automated Machine Learning},\n    author    = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and Springenberg, Jost and Blum, Manuel and Hutter, Frank},\n    booktitle = {Advances in Neural Information Processing Systems 28 (2015)},\n    pages     = {2962--2970},\n    year      = {2015}\n}\n```\n\n----------------------------------------\n\n**Auto-Sklearn 2.0: The Next Generation**\n*Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter**\narXiv:2007.04074 [cs.LG], 2020\n\n[Link](https://arxiv.org/abs/2007.04074) to publication.\n```\n@article{feurer-arxiv20a,\n    title     = {Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning},\n    author    = {Feurer, Matthias and Eggensperger, Katharina and Falkner, Stefan and Lindauer, Marius and Hutter, Frank},\n    booktitle = {arXiv:2007.04074 [cs.LG]},\n    year      = {2020}\n}\n```\n\n----------------------------------------\n\nAlso, have a look at the blog on [automl.org](https://automl.org) where we regularly release blogposts.",
    "bugtrack_url": null,
    "license": "BSD3",
    "summary": "Automated machine learning.",
    "version": "0.15.0",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "e87adf30c6b646c702c82fa8adebbee3",
                "sha256": "082941a56acfc93a83e221e08ef5d5b2083b1ff58d18be7c27d003a11e4a41d0"
            },
            "downloads": -1,
            "filename": "auto-sklearn-0.15.0.tar.gz",
            "has_sig": false,
            "md5_digest": "e87adf30c6b646c702c82fa8adebbee3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 6472485,
            "upload_time": "2022-09-20T10:30:34",
            "upload_time_iso_8601": "2022-09-20T10:30:34.459479Z",
            "url": "https://files.pythonhosted.org/packages/e5/0f/abac227b48edd7f4d9309492b35bdb7a4f70d4d643a60244cac83fd96029/auto-sklearn-0.15.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-09-20 10:30:34",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "auto-sklearn"
}
        
Elapsed time: 0.03715s