# auto-sklearn
**auto-sklearn** is an automated machine learning toolkit and a drop-in replacement for a [scikit-learn](https://scikit-learn.org) estimator.
Find the documentation **[here](https://automl.github.io/auto-sklearn/)**. Quick links:
* [Installation Guide](https://automl.github.io/auto-sklearn/master/installation.html)
* [Releases](https://automl.github.io/auto-sklearn/master/releases.html)
* [Manual](https://automl.github.io/auto-sklearn/master/manual.html)
* [Examples](https://automl.github.io/auto-sklearn/master/examples/index.html)
* [API](https://automl.github.io/auto-sklearn/master/api.html)
## auto-sklearn in one image

## auto-sklearn in four lines of code
```python
import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)
```
## Relevant publications
If you use auto-sklearn in scientific publications, we would appreciate citations.
**Efficient and Robust Automated Machine Learning**
*Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter*
Advances in Neural Information Processing Systems 28 (2015)
[Link](https://papers.neurips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf) to publication.
```
@inproceedings{feurer-neurips15a,
title = {Efficient and Robust Automated Machine Learning},
author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and Springenberg, Jost and Blum, Manuel and Hutter, Frank},
booktitle = {Advances in Neural Information Processing Systems 28 (2015)},
pages = {2962--2970},
year = {2015}
}
```
----------------------------------------
**Auto-Sklearn 2.0: The Next Generation**
*Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter**
arXiv:2007.04074 [cs.LG], 2020
[Link](https://arxiv.org/abs/2007.04074) to publication.
```
@article{feurer-arxiv20a,
title = {Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning},
author = {Feurer, Matthias and Eggensperger, Katharina and Falkner, Stefan and Lindauer, Marius and Hutter, Frank},
booktitle = {arXiv:2007.04074 [cs.LG]},
year = {2020}
}
```
----------------------------------------
Also, have a look at the blog on [automl.org](https://automl.org) where we regularly release blogposts.
Raw data
{
"_id": null,
"home_page": "https://automl.github.io/auto-sklearn",
"name": "auto-sklearn",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Matthias Feurer",
"author_email": "feurerm@informatik.uni-freiburg.de",
"download_url": "https://files.pythonhosted.org/packages/e5/0f/abac227b48edd7f4d9309492b35bdb7a4f70d4d643a60244cac83fd96029/auto-sklearn-0.15.0.tar.gz",
"platform": "Linux",
"description": "# auto-sklearn\n\n**auto-sklearn** is an automated machine learning toolkit and a drop-in replacement for a [scikit-learn](https://scikit-learn.org) estimator.\n\nFind the documentation **[here](https://automl.github.io/auto-sklearn/)**. Quick links:\n * [Installation Guide](https://automl.github.io/auto-sklearn/master/installation.html)\n * [Releases](https://automl.github.io/auto-sklearn/master/releases.html)\n * [Manual](https://automl.github.io/auto-sklearn/master/manual.html)\n * [Examples](https://automl.github.io/auto-sklearn/master/examples/index.html)\n * [API](https://automl.github.io/auto-sklearn/master/api.html)\n\n## auto-sklearn in one image\n\n\n\n## auto-sklearn in four lines of code\n\n```python\nimport autosklearn.classification\ncls = autosklearn.classification.AutoSklearnClassifier()\ncls.fit(X_train, y_train)\npredictions = cls.predict(X_test)\n```\n\n## Relevant publications\n\nIf you use auto-sklearn in scientific publications, we would appreciate citations.\n\n**Efficient and Robust Automated Machine Learning**\n*Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter*\nAdvances in Neural Information Processing Systems 28 (2015)\n\n[Link](https://papers.neurips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf) to publication.\n```\n@inproceedings{feurer-neurips15a,\n title = {Efficient and Robust Automated Machine Learning},\n author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and Springenberg, Jost and Blum, Manuel and Hutter, Frank},\n booktitle = {Advances in Neural Information Processing Systems 28 (2015)},\n pages = {2962--2970},\n year = {2015}\n}\n```\n\n----------------------------------------\n\n**Auto-Sklearn 2.0: The Next Generation**\n*Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter**\narXiv:2007.04074 [cs.LG], 2020\n\n[Link](https://arxiv.org/abs/2007.04074) to publication.\n```\n@article{feurer-arxiv20a,\n title = {Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning},\n author = {Feurer, Matthias and Eggensperger, Katharina and Falkner, Stefan and Lindauer, Marius and Hutter, Frank},\n booktitle = {arXiv:2007.04074 [cs.LG]},\n year = {2020}\n}\n```\n\n----------------------------------------\n\nAlso, have a look at the blog on [automl.org](https://automl.org) where we regularly release blogposts.",
"bugtrack_url": null,
"license": "BSD3",
"summary": "Automated machine learning.",
"version": "0.15.0",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "e87adf30c6b646c702c82fa8adebbee3",
"sha256": "082941a56acfc93a83e221e08ef5d5b2083b1ff58d18be7c27d003a11e4a41d0"
},
"downloads": -1,
"filename": "auto-sklearn-0.15.0.tar.gz",
"has_sig": false,
"md5_digest": "e87adf30c6b646c702c82fa8adebbee3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 6472485,
"upload_time": "2022-09-20T10:30:34",
"upload_time_iso_8601": "2022-09-20T10:30:34.459479Z",
"url": "https://files.pythonhosted.org/packages/e5/0f/abac227b48edd7f4d9309492b35bdb7a4f70d4d643a60244cac83fd96029/auto-sklearn-0.15.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-09-20 10:30:34",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "auto-sklearn"
}