bandicoot


Namebandicoot JSON
Version 0.5.3 PyPI version JSON
download
home_pagehttps://github.com/yvesalexandre/bandicoot
SummaryA toolbox to analyze mobile phone metadata.
upload_time2016-08-02 01:55:27
maintainerNone
docs_urlNone
authorYves-Alexandre de Montjoye
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            =========
bandicoot
=========

.. image:: https://img.shields.io/pypi/v/bandicoot.svg
    :target: https://pypi.python.org/pypi/bandicoot
    :alt: Version
     
.. image:: https://img.shields.io/pypi/l/bandicoot.svg
    :target: https://github.com/yvesalexandre/bandicoot/blob/master/LICENSE
    :alt: MIT License

.. image:: https://img.shields.io/pypi/dm/bandicoot.svg
    :target: https://pypi.python.org/pypi/bandicoot
    :alt: PyPI downloads

.. image:: https://img.shields.io/travis/yvesalexandre/bandicoot.svg
    :target: https://travis-ci.org/yvesalexandre/bandicoot
    :alt: Continuous integration

.. begin

**bandicoot** (http://bandicoot.mit.edu) is Python toolbox to analyze mobile phone metadata. It provides a complete, easy-to-use environment for data-scientist to analyze mobile phone metadata. With only a few lines of code, load your datasets, visualize the data, perform analyses, and export the results.

.. image:: https://raw.githubusercontent.com/yvesalexandre/bandicoot/master/docs/_static/bandicoot-dashboard.png
    :alt: Bandicoot interactive visualization

---------------
Where to get it
---------------

The source code is currently hosted on Github at https://github.com/yvesalexandre/bandicoot. Binary installers for the latest released version are available at the Python package index:

    http://pypi.python.org/pypi/bandicoot/

And via `easy_install`:

.. code-block:: sh

    easy_install bandicoot

or  `pip`:

.. code-block:: sh

    pip install bandicoot

------------
Dependencies
------------

bandicoot has no dependencies, which allows users to easily compute indicators on a production machine. To run tests and compile the visualization, optional dependencies are needed:

- `nose <http://nose.readthedocs.io/en/latest/>`_, `numpy <http://www.numpy.org/>`_, `scipy <https://www.scipy.org/>`_, and `networkx <https://networkx.github.io/>`_ for tests,
- `npm <http://npmjs.com>`_ to compile the js and css files of the dashboard.

-------
Licence
-------

MIT

-------------
Documentation
-------------

The official documentation is hosted on http://bandicoot.mit.edu/docs. It includes a quickstart tutorial, a detailed reference for all functions, and guides on how to use and extend bandicoot. You can also check out our `interactive training notebooks <https://github.com/yvesalexandre/bandicoot-training>`_ to learn how to download your own data from your mobile phone and load it into bandicoot to visualize it or to learn how to use bandicoot indicators in *scikit-learn*.
            

Raw data

            {
    "_id": null,
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "cheesecake_code_kwalitee_id": null,
    "keywords": null,
    "upload_time": "2016-08-02 01:55:27",
    "author": "Yves-Alexandre de Montjoye",
    "home_page": "https://github.com/yvesalexandre/bandicoot",
    "github_user": "yvesalexandre",
    "download_url": "https://pypi.python.org/packages/0d/22/a1e4b2176f1cb24ed9c6c61d8682a2e8daff159664115de378310fdfde56/bandicoot-0.5.3.tar.gz",
    "platform": "UNKNOWN",
    "version": "0.5.3",
    "cheesecake_documentation_id": null,
    "description": "=========\nbandicoot\n=========\n\n.. image:: https://img.shields.io/pypi/v/bandicoot.svg\n    :target: https://pypi.python.org/pypi/bandicoot\n    :alt: Version\n     \n.. image:: https://img.shields.io/pypi/l/bandicoot.svg\n    :target: https://github.com/yvesalexandre/bandicoot/blob/master/LICENSE\n    :alt: MIT License\n\n.. image:: https://img.shields.io/pypi/dm/bandicoot.svg\n    :target: https://pypi.python.org/pypi/bandicoot\n    :alt: PyPI downloads\n\n.. image:: https://img.shields.io/travis/yvesalexandre/bandicoot.svg\n    :target: https://travis-ci.org/yvesalexandre/bandicoot\n    :alt: Continuous integration\n\n.. begin\n\n**bandicoot** (http://bandicoot.mit.edu) is Python toolbox to analyze mobile phone metadata. It provides a complete, easy-to-use environment for data-scientist to analyze mobile phone metadata. With only a few lines of code, load your datasets, visualize the data, perform analyses, and export the results.\n\n.. image:: https://raw.githubusercontent.com/yvesalexandre/bandicoot/master/docs/_static/bandicoot-dashboard.png\n    :alt: Bandicoot interactive visualization\n\n---------------\nWhere to get it\n---------------\n\nThe source code is currently hosted on Github at https://github.com/yvesalexandre/bandicoot. Binary installers for the latest released version are available at the Python package index:\n\n    http://pypi.python.org/pypi/bandicoot/\n\nAnd via `easy_install`:\n\n.. code-block:: sh\n\n    easy_install bandicoot\n\nor  `pip`:\n\n.. code-block:: sh\n\n    pip install bandicoot\n\n------------\nDependencies\n------------\n\nbandicoot has no dependencies, which allows users to easily compute indicators on a production machine. To run tests and compile the visualization, optional dependencies are needed:\n\n- `nose <http://nose.readthedocs.io/en/latest/>`_, `numpy <http://www.numpy.org/>`_, `scipy <https://www.scipy.org/>`_, and `networkx <https://networkx.github.io/>`_ for tests,\n- `npm <http://npmjs.com>`_ to compile the js and css files of the dashboard.\n\n-------\nLicence\n-------\n\nMIT\n\n-------------\nDocumentation\n-------------\n\nThe official documentation is hosted on http://bandicoot.mit.edu/docs. It includes a quickstart tutorial, a detailed reference for all functions, and guides on how to use and extend bandicoot. You can also check out our `interactive training notebooks <https://github.com/yvesalexandre/bandicoot-training>`_ to learn how to download your own data from your mobile phone and load it into bandicoot to visualize it or to learn how to use bandicoot indicators in *scikit-learn*.",
    "lcname": "bandicoot",
    "name": "bandicoot",
    "github": true,
    "bugtrack_url": null,
    "license": "MIT",
    "travis_ci": true,
    "github_project": "bandicoot",
    "summary": "A toolbox to analyze mobile phone metadata.",
    "split_keywords": [],
    "author_email": "yvesalexandre@demontjoye.com",
    "urls": [
        {
            "has_sig": false,
            "upload_time": "2016-08-02T01:55:27",
            "comment_text": "",
            "python_version": "source",
            "url": "https://pypi.python.org/packages/0d/22/a1e4b2176f1cb24ed9c6c61d8682a2e8daff159664115de378310fdfde56/bandicoot-0.5.3.tar.gz",
            "md5_digest": "eb83e9262562080b14fd16749a420787",
            "downloads": 0,
            "filename": "bandicoot-0.5.3.tar.gz",
            "packagetype": "sdist",
            "path": "0d/22/a1e4b2176f1cb24ed9c6c61d8682a2e8daff159664115de378310fdfde56/bandicoot-0.5.3.tar.gz",
            "size": 490907
        }
    ],
    "cheesecake_installability_id": null,
    "coveralls": true
}
        
Elapsed time: 0.03650s