beast-backbones


Namebeast-backbones JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://github.com/paninski-lab/beast
SummaryBehavioral analysis via self-supervised pretraining of transformers
upload_time2025-07-17 21:44:57
maintainerNone
docs_urlNone
authorYanchen Wang
requires_python>=3.10
licenseMIT
keywords machine learning deep learning computer_vision
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # beast

![GitHub](https://img.shields.io/github/license/paninski-lab/beast)
![PyPI](https://img.shields.io/pypi/v/py-beast)

**Be**havioral **a**nalysis via **s**elf-supervised pretraining of **t**ransformers

`beast` is a package for pretraining vision transformers on unlabeled data to provide backbones 
for downstream tasks like pose estimation, action segmentation, and neural encoding.

## Installation

### Step 1: Install ffmpeg
First, check to see if you have ffmpeg installed by typing the following in the terminal:

```commandline
ffmpeg -version
```

If not, install:

```commandline
sudo apt install ffmpeg
```

### Step 2: Create a conda environment

First, [install anaconda](https://docs.anaconda.com/free/anaconda/install/index.html).

Next, create and activate a conda environment:

```commandline
conda create --yes --name beast python=3.10
conda activate beast
```

### Step 3: Download the repo from github and install
Move to your home directory (or wherever you would like to download the code) and install:

```commandline
cd ~
git clone https://github.com/paninski-lab/beast
cd beast
pip install -e .
```

## Usage

`beast` comes with a simple command line interface. To get more information, run
```commandline
beast -h
```

### Extract frames

Extract frames from a directory of videos to train `beast` with.

```commandline
beast extract --input <video_dir> --output <output_dir> [options]
```

Type "beast extract -h" in the terminal for details on the options.

### Train a model

You will need to specify a config path; see the `configs` directory for examples.

```commandline
beast train --config <config_path> [options]
```

Type "beast train -h" in the terminal for details on the options.

### Run inference

Inference on a single video or a directory of videos: 

```commandline
beast predict --model <model_dir> --input <video_path> [options]
```

Inference on (possibly nested) directories of images: 

```commandline
beast predict --model <model_dir> --input <video_path> [options]
```

Type "beast predict -h" in the terminal for details on the options.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/paninski-lab/beast",
    "name": "beast-backbones",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "machine learning, deep learning, computer_vision",
    "author": "Yanchen Wang",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/fa/34/6d2d7bcc5035ef7493f81fa82a2b6a332e6fdbdfa7023deb356aef0935ef/beast_backbones-1.1.0.tar.gz",
    "platform": null,
    "description": "# beast\n\n![GitHub](https://img.shields.io/github/license/paninski-lab/beast)\n![PyPI](https://img.shields.io/pypi/v/py-beast)\n\n**Be**havioral **a**nalysis via **s**elf-supervised pretraining of **t**ransformers\n\n`beast` is a package for pretraining vision transformers on unlabeled data to provide backbones \nfor downstream tasks like pose estimation, action segmentation, and neural encoding.\n\n## Installation\n\n### Step 1: Install ffmpeg\nFirst, check to see if you have ffmpeg installed by typing the following in the terminal:\n\n```commandline\nffmpeg -version\n```\n\nIf not, install:\n\n```commandline\nsudo apt install ffmpeg\n```\n\n### Step 2: Create a conda environment\n\nFirst, [install anaconda](https://docs.anaconda.com/free/anaconda/install/index.html).\n\nNext, create and activate a conda environment:\n\n```commandline\nconda create --yes --name beast python=3.10\nconda activate beast\n```\n\n### Step 3: Download the repo from github and install\nMove to your home directory (or wherever you would like to download the code) and install:\n\n```commandline\ncd ~\ngit clone https://github.com/paninski-lab/beast\ncd beast\npip install -e .\n```\n\n## Usage\n\n`beast` comes with a simple command line interface. To get more information, run\n```commandline\nbeast -h\n```\n\n### Extract frames\n\nExtract frames from a directory of videos to train `beast` with.\n\n```commandline\nbeast extract --input <video_dir> --output <output_dir> [options]\n```\n\nType \"beast extract -h\" in the terminal for details on the options.\n\n### Train a model\n\nYou will need to specify a config path; see the `configs` directory for examples.\n\n```commandline\nbeast train --config <config_path> [options]\n```\n\nType \"beast train -h\" in the terminal for details on the options.\n\n### Run inference\n\nInference on a single video or a directory of videos: \n\n```commandline\nbeast predict --model <model_dir> --input <video_path> [options]\n```\n\nInference on (possibly nested) directories of images: \n\n```commandline\nbeast predict --model <model_dir> --input <video_path> [options]\n```\n\nType \"beast predict -h\" in the terminal for details on the options.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Behavioral analysis via self-supervised pretraining of transformers",
    "version": "1.1.0",
    "project_urls": {
        "Documentation": "https://github.com/paninski-lab/beast",
        "Homepage": "https://github.com/paninski-lab/beast",
        "Repository": "https://github.com/paninski-lab/beast"
    },
    "split_keywords": [
        "machine learning",
        " deep learning",
        " computer_vision"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "485dc01941bc2fab3c4b6fb77bb0f31241fa137d49208090b42c33a2a82d16cc",
                "md5": "718e83371990e486a673b5c40b0bf047",
                "sha256": "3ac78da2063ebcdfe117d1332987ce18416841bfd7f98735897afe87d88dab3a"
            },
            "downloads": -1,
            "filename": "beast_backbones-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "718e83371990e486a673b5c40b0bf047",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 43421,
            "upload_time": "2025-07-17T21:44:56",
            "upload_time_iso_8601": "2025-07-17T21:44:56.265913Z",
            "url": "https://files.pythonhosted.org/packages/48/5d/c01941bc2fab3c4b6fb77bb0f31241fa137d49208090b42c33a2a82d16cc/beast_backbones-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fa346d2d7bcc5035ef7493f81fa82a2b6a332e6fdbdfa7023deb356aef0935ef",
                "md5": "b00f026f1ec043f30c1e8463055ffb31",
                "sha256": "353de3d1ac738f47adf5a3158c874c229eee84e246a0afa33cc75493a67bc7c4"
            },
            "downloads": -1,
            "filename": "beast_backbones-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b00f026f1ec043f30c1e8463055ffb31",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 34512,
            "upload_time": "2025-07-17T21:44:57",
            "upload_time_iso_8601": "2025-07-17T21:44:57.758169Z",
            "url": "https://files.pythonhosted.org/packages/fa/34/6d2d7bcc5035ef7493f81fa82a2b6a332e6fdbdfa7023deb356aef0935ef/beast_backbones-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-17 21:44:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "paninski-lab",
    "github_project": "beast",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "beast-backbones"
}
        
Elapsed time: 3.90609s