classifai


Nameclassifai JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/irthomasthomas/classifai
SummaryA command-line tool for AI-powered classification tasks using LLMs
upload_time2024-09-01 23:24:43
maintainerNone
docs_urlNone
authorThomas Thomas
requires_python>=3.6
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Classifai

Classifai is a powerful and user-friendly command-line tool for AI-powered classification tasks. It leverages the capabilities of large language models to provide accurate and efficient classification of various types of content.

## Features

- Easy-to-use command-line interface
- Supports multiple classification categories
- Utilizes advanced language models for high accuracy
- Customizable prompts and examples
- Supports both OpenAI and OpenRouter models

## Installation

```
pip install pipx
pipx install classifai
```

## Usage

```
classifai [OPTIONS] CONTENT [CONTENT ...]
```

For more details, run `classifai --help`.

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Contributing

Contributions are welcome! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for details.

## Usage Examples

1. Multiple classification with Examples:
   ```
   classifai  'news.ycombinator.com' 'facebook.com' 'ai.meta.com' --classes 'signal' 'noise' 'neutral' --examples "github.com:signal" "dailymail.com:noise" "arxiv.org:signal" "instagram.com:noise" "pintrest.com:noise" "anthropic.ai:signal" "stackoverflow.com:signal" "twitter.com:noise --model openrouter/openai/gpt-4-0314
   ```
   ```json
   [
      {
         "content": "news.ycombinator.com",
         "classification": "signal",
         "score": 1.0
      },
      {
         "content": "facebook.com",
         "classification": "noise",
         "score": 1.0
      },
      {
         "content": "ai.meta.com",
         "classification": "signal",
         "score": 1.0
      }
   ]
   ```

2. Terminal commands classification:
   ```
   'df -h' 'chown -R user:user /' -c 'safe' 'danger' 'neutral' -e "ls:safe" "rm:danger" "echo:neutral" --m gpt-4o-mini
   ```
   ```json
   [
      {
         "content": "df -h",
         "classification": "safe",
         "score": 1.0
      },
      {
         "content": "chown -R user:user /",
         "classification": "danger",
         "score": 1.0
      }
   ]
   ```

3. Classify a tweet
   ```shell
   classifai $tweet --classes 'AI' 'ASI' 'AGI' -m gpt-4o-mini
   ```
   ```json
   [
      {
         "content": "Superintelligence is within reach.\n\nBuilding safe superintelligence (SSI) is the most important technical problem of our\u200b\u200b time.\n\nWe've started the world\u2019s first straight-shot SSI lab, with one goal and one product: a safe superintelligence.",
         "classification": "ASI",
         "score": 1.0
      }
   ]
   ```
   ```shell
   classifai $tweet --classes 'PROGRAMING' 'MACHINE-LEARNING' -m gpt-4o-mini
   ```
   ```json
   [
   {
      "content": "Superintelligence is within reach.\n\nBuilding safe superintelligence (SSI) is the most important technical problem of our\u200b\u200b time.\n\nWe've started the world\u2019s first straight-shot SSI lab, with one goal and one product: a safe superintelligence.",
      "classification": "MACHINE-LEARNING",
      "score": 0.833334466588825
   }
   ]
   ```

## Advanced scripts

### Acting on the classification
```bash
class-tweet() {
    local tweet="$1"
    local threshold=0.2
    local class="MACHINE-LEARNING"

    result=$(classifai "$tweet" --classes 'PROGRAMMING' 'MACHINE-LEARNING' -m gpt-4o-mini | jq -r '.[0] | select(.classification == "'"$class"'" and .score > '"$threshold"') | .classification')

    if [ -n "$result" ]; then
        echo "Tweet classified as $class with high confidence. Executing demo..."
        echo "Demo: This is a highly relevant tweet about $class"
    else
        echo "Tweet does not meet classification criteria."
    fi
}
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/irthomasthomas/classifai",
    "name": "classifai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Thomas Thomas",
    "author_email": "irthomasthomas@Gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c1/40/970823061f3ed27edd820a4c76e254862a3a7df6d7d2647a40a1d1a1b428/classifai-0.1.0.tar.gz",
    "platform": null,
    "description": "# Classifai\n\nClassifai is a powerful and user-friendly command-line tool for AI-powered classification tasks. It leverages the capabilities of large language models to provide accurate and efficient classification of various types of content.\n\n## Features\n\n- Easy-to-use command-line interface\n- Supports multiple classification categories\n- Utilizes advanced language models for high accuracy\n- Customizable prompts and examples\n- Supports both OpenAI and OpenRouter models\n\n## Installation\n\n```\npip install pipx\npipx install classifai\n```\n\n## Usage\n\n```\nclassifai [OPTIONS] CONTENT [CONTENT ...]\n```\n\nFor more details, run `classifai --help`.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Contributing\n\nContributions are welcome! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for details.\n\n## Usage Examples\n\n1. Multiple classification with Examples:\n   ```\n   classifai  'news.ycombinator.com' 'facebook.com' 'ai.meta.com' --classes 'signal' 'noise' 'neutral' --examples \"github.com:signal\" \"dailymail.com:noise\" \"arxiv.org:signal\" \"instagram.com:noise\" \"pintrest.com:noise\" \"anthropic.ai:signal\" \"stackoverflow.com:signal\" \"twitter.com:noise --model openrouter/openai/gpt-4-0314\n   ```\n   ```json\n   [\n      {\n         \"content\": \"news.ycombinator.com\",\n         \"classification\": \"signal\",\n         \"score\": 1.0\n      },\n      {\n         \"content\": \"facebook.com\",\n         \"classification\": \"noise\",\n         \"score\": 1.0\n      },\n      {\n         \"content\": \"ai.meta.com\",\n         \"classification\": \"signal\",\n         \"score\": 1.0\n      }\n   ]\n   ```\n\n2. Terminal commands classification:\n   ```\n   'df -h' 'chown -R user:user /' -c 'safe' 'danger' 'neutral' -e \"ls:safe\" \"rm:danger\" \"echo:neutral\" --m gpt-4o-mini\n   ```\n   ```json\n   [\n      {\n         \"content\": \"df -h\",\n         \"classification\": \"safe\",\n         \"score\": 1.0\n      },\n      {\n         \"content\": \"chown -R user:user /\",\n         \"classification\": \"danger\",\n         \"score\": 1.0\n      }\n   ]\n   ```\n\n3. Classify a tweet\n   ```shell\n   classifai $tweet --classes 'AI' 'ASI' 'AGI' -m gpt-4o-mini\n   ```\n   ```json\n   [\n      {\n         \"content\": \"Superintelligence is within reach.\\n\\nBuilding safe superintelligence (SSI) is the most important technical problem of our\\u200b\\u200b time.\\n\\nWe've started the world\\u2019s first straight-shot SSI lab, with one goal and one product: a safe superintelligence.\",\n         \"classification\": \"ASI\",\n         \"score\": 1.0\n      }\n   ]\n   ```\n   ```shell\n   classifai $tweet --classes 'PROGRAMING' 'MACHINE-LEARNING' -m gpt-4o-mini\n   ```\n   ```json\n   [\n   {\n      \"content\": \"Superintelligence is within reach.\\n\\nBuilding safe superintelligence (SSI) is the most important technical problem of our\\u200b\\u200b time.\\n\\nWe've started the world\\u2019s first straight-shot SSI lab, with one goal and one product: a safe superintelligence.\",\n      \"classification\": \"MACHINE-LEARNING\",\n      \"score\": 0.833334466588825\n   }\n   ]\n   ```\n\n## Advanced scripts\n\n### Acting on the classification\n```bash\nclass-tweet() {\n    local tweet=\"$1\"\n    local threshold=0.2\n    local class=\"MACHINE-LEARNING\"\n\n    result=$(classifai \"$tweet\" --classes 'PROGRAMMING' 'MACHINE-LEARNING' -m gpt-4o-mini | jq -r '.[0] | select(.classification == \"'\"$class\"'\" and .score > '\"$threshold\"') | .classification')\n\n    if [ -n \"$result\" ]; then\n        echo \"Tweet classified as $class with high confidence. Executing demo...\"\n        echo \"Demo: This is a highly relevant tweet about $class\"\n    else\n        echo \"Tweet does not meet classification criteria.\"\n    fi\n}\n```\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A command-line tool for AI-powered classification tasks using LLMs",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/irthomasthomas/classifai"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "db6ce7ed7c219cbe60cb22d49d61fdcf4b930510de659351142bd9b944c1d410",
                "md5": "d4718a8b2e1f25361f97019a6298d773",
                "sha256": "ea039d646689580aefc276a65286339c56bb8cd613d870ee72150a140f869ab7"
            },
            "downloads": -1,
            "filename": "classifai-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d4718a8b2e1f25361f97019a6298d773",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 2909,
            "upload_time": "2024-09-01T23:24:41",
            "upload_time_iso_8601": "2024-09-01T23:24:41.759601Z",
            "url": "https://files.pythonhosted.org/packages/db/6c/e7ed7c219cbe60cb22d49d61fdcf4b930510de659351142bd9b944c1d410/classifai-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c140970823061f3ed27edd820a4c76e254862a3a7df6d7d2647a40a1d1a1b428",
                "md5": "6a03e6f4551139e6309c9ad073876dcf",
                "sha256": "35b5341a267b0f404cd347f0c79856dee3900ed59413517ef6bfafbaf6351ace"
            },
            "downloads": -1,
            "filename": "classifai-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6a03e6f4551139e6309c9ad073876dcf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 2721,
            "upload_time": "2024-09-01T23:24:43",
            "upload_time_iso_8601": "2024-09-01T23:24:43.337136Z",
            "url": "https://files.pythonhosted.org/packages/c1/40/970823061f3ed27edd820a4c76e254862a3a7df6d7d2647a40a1d1a1b428/classifai-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-01 23:24:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "irthomasthomas",
    "github_project": "classifai",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "classifai"
}
        
Elapsed time: 0.30727s