data-process


Namedata-process JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://github.com/weaming/data-process
Summarymake processing 2d data more convenient
upload_time2025-10-26 12:29:55
maintainerNone
docs_urlNone
authorweaming
requires_pythonNone
licenseNone
keywords json csv pandas
VCS
bugtrack_url
requirements PyYAML
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Data Process

Make processing 2d data more convenient

## Install

    pip install data-process

## Module description

* collect_csv_data: Collect data in a directory contains CSV files
* date: Generate current date and time; get the range of and start, end day of a period date; convert bettween string and `datetime.datetime` type
* date_range: Get the range of date from the start, end, range gap you provided
* decimal_helper: Convert float to Decimal type
* dict_helper: Replace the keys of a dict; infinite `defaultdict` data structure; get data by a series of keys
* filter_date: Filter a series date string by the given start, end date
* green_dict: Make the `dict` compatibal with the `json.dumps`, especially for `date(time)` type
* group_by: Group a series of `dict` by a list of functions; degroup a deep grouped dict by the depths
* io_csv: Read, write csv files
* io_json: Read, write json files
* io_files: List files in a glob pattern directories
* io_lines: Read as lines from a file except the lines are blank or start with '#'
* iter_dict: Convert dict for output, handled by the type of values separately
* join: Left, right, inner, outer join a series of dict as like in SQL
* list_helper: Flat a nested list
* pandas_helper: Functions wrapper for using `pandas` conveniently. Convert `pandas.DataFrame` to a list of dict; aggregate DataFrame by a field.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/weaming/data-process",
    "name": "data-process",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "json csv pandas",
    "author": "weaming",
    "author_email": "garden.yuen@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/53/29/5782081090ead3fc470d1ced94c6daf23a4e9f2292404389f4e5eccadd24/data_process-0.4.0.tar.gz",
    "platform": null,
    "description": "# Data Process\n\nMake processing 2d data more convenient\n\n## Install\n\n    pip install data-process\n\n## Module description\n\n* collect_csv_data: Collect data in a directory contains CSV files\n* date: Generate current date and time; get the range of and start, end day of a period date; convert bettween string and `datetime.datetime` type\n* date_range: Get the range of date from the start, end, range gap you provided\n* decimal_helper: Convert float to Decimal type\n* dict_helper: Replace the keys of a dict; infinite `defaultdict` data structure; get data by a series of keys\n* filter_date: Filter a series date string by the given start, end date\n* green_dict: Make the `dict` compatibal with the `json.dumps`, especially for `date(time)` type\n* group_by: Group a series of `dict` by a list of functions; degroup a deep grouped dict by the depths\n* io_csv: Read, write csv files\n* io_json: Read, write json files\n* io_files: List files in a glob pattern directories\n* io_lines: Read as lines from a file except the lines are blank or start with '#'\n* iter_dict: Convert dict for output, handled by the type of values separately\n* join: Left, right, inner, outer join a series of dict as like in SQL\n* list_helper: Flat a nested list\n* pandas_helper: Functions wrapper for using `pandas` conveniently. Convert `pandas.DataFrame` to a list of dict; aggregate DataFrame by a field.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "make processing 2d data more convenient",
    "version": "0.4.0",
    "project_urls": {
        "Bug Reports": "https://github.com/weaming/data-process",
        "Homepage": "https://github.com/weaming/data-process",
        "Source": "https://github.com/weaming/data-process"
    },
    "split_keywords": [
        "json",
        "csv",
        "pandas"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e3f81f6da5b52b90453ac07dab6ade1b663e236e0753a4cb72da5b697476145d",
                "md5": "c681afd49988a0c0b4577403d6b883f6",
                "sha256": "510103a4f9668a1b8c98e402da5233e9b27f24127eeafb82c311da3335d27c77"
            },
            "downloads": -1,
            "filename": "data_process-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c681afd49988a0c0b4577403d6b883f6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 13082,
            "upload_time": "2025-10-26T12:29:54",
            "upload_time_iso_8601": "2025-10-26T12:29:54.229201Z",
            "url": "https://files.pythonhosted.org/packages/e3/f8/1f6da5b52b90453ac07dab6ade1b663e236e0753a4cb72da5b697476145d/data_process-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "53295782081090ead3fc470d1ced94c6daf23a4e9f2292404389f4e5eccadd24",
                "md5": "abb168bf364628323151c892e6011260",
                "sha256": "ded46b66de3802f7b4d95d75bc8ec0ccdd185245de32914fc10d2753f0c5e7e8"
            },
            "downloads": -1,
            "filename": "data_process-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "abb168bf364628323151c892e6011260",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10419,
            "upload_time": "2025-10-26T12:29:55",
            "upload_time_iso_8601": "2025-10-26T12:29:55.596305Z",
            "url": "https://files.pythonhosted.org/packages/53/29/5782081090ead3fc470d1ced94c6daf23a4e9f2292404389f4e5eccadd24/data_process-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-26 12:29:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "weaming",
    "github_project": "data-process",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "PyYAML",
            "specs": [
                [
                    ">=",
                    "6"
                ]
            ]
        }
    ],
    "lcname": "data-process"
}
        
Elapsed time: 2.15326s