#### This python package I have created to scrape the latest articles title of recent 30 days. Besides that it will scrape and collect the date as well as the subtitle.
* Importantly, this task was conducted with a steadfast commitment to the ethical guidelines governing web scraping.
Additionally this would be helpful in finding the the keywords and the trends in data science community with in the month after doing the analysis.
Also on enhancing the skills for text generation using RNN LSTMs.
Raw data
{
"_id": null,
"home_page": "https://github.com/Chesta1/datascience_article_scrapping",
"name": "datascraping-article",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Chesta Dhingra",
"author_email": "chestadhingra25@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/4b/84/574fb9da3bed4dee3542598afdb6d818196827c0166be65ac42457323bf9/datascraping_article-0.1.tar.gz",
"platform": null,
"description": "#### This python package I have created to scrape the latest articles title of recent 30 days. Besides that it will scrape and collect the date as well as the subtitle.\r\n* Importantly, this task was conducted with a steadfast commitment to the ethical guidelines governing web scraping.\r\nAdditionally this would be helpful in finding the the keywords and the trends in data science community with in the month after doing the analysis.\r\nAlso on enhancing the skills for text generation using RNN LSTMs.\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A python package for web scraping the latest articles on popular Data science blogs",
"version": "0.1",
"project_urls": {
"Homepage": "https://github.com/Chesta1/datascience_article_scrapping"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ef4b1a4056e8441e42afb63d230168b0755485ec2943f340998f0df59f72e6da",
"md5": "0fa074004329771d804f49d2d9bf1b89",
"sha256": "0eefef330db004585a758a30968422c5025e29147e20a4bb43321ba4fef17555"
},
"downloads": -1,
"filename": "datascraping_article-0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0fa074004329771d804f49d2d9bf1b89",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4994,
"upload_time": "2024-01-23T13:54:44",
"upload_time_iso_8601": "2024-01-23T13:54:44.487044Z",
"url": "https://files.pythonhosted.org/packages/ef/4b/1a4056e8441e42afb63d230168b0755485ec2943f340998f0df59f72e6da/datascraping_article-0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4b84574fb9da3bed4dee3542598afdb6d818196827c0166be65ac42457323bf9",
"md5": "be558d401b691948a125cbf6edd2477b",
"sha256": "1d655c32f82c53dc2a97cee48258d6167b2471935af3b084347d0a31f7f4eb19"
},
"downloads": -1,
"filename": "datascraping_article-0.1.tar.gz",
"has_sig": false,
"md5_digest": "be558d401b691948a125cbf6edd2477b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4051,
"upload_time": "2024-01-23T13:54:45",
"upload_time_iso_8601": "2024-01-23T13:54:45.929660Z",
"url": "https://files.pythonhosted.org/packages/4b/84/574fb9da3bed4dee3542598afdb6d818196827c0166be65ac42457323bf9/datascraping_article-0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-23 13:54:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Chesta1",
"github_project": "datascience_article_scrapping",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "pandas",
"specs": []
},
{
"name": "selenium",
"specs": []
}
],
"lcname": "datascraping-article"
}