dpamber


Namedpamber JSON
Version 0.4.0 PyPI version JSON
download
home_page
SummarySome useful tools related to Amber and DP.
upload_time2023-09-09 01:00:12
maintainer
docs_urlNone
author
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # dpamber

Some useful tools related to Amber and DP.

## Installation

```sh
pip install dpamber
```

## Tools
### corr: generating data for DPRc models

[![DOI:10.1021/acs.jctc.1c00201](https://img.shields.io/badge/DOI-10.1021%2Facs.jctc.1c00201-blue)](https://doi.org/10.1021/acs.jctc.1c00201)
[![Citations](https://citations.njzjz.win/10.1021/acs.jctc.1c00201)](https://doi.org/10.1021/acs.jctc.1c00201)

`corr` tool generates [DeePMD-kit](https://github.com/deepmodeling/deepmd-kit) training data for DPRc from AMBER sander low-level QM/MM data and high-level data. For details of DPRc, read the [DPRc paper](https://doi.org/10.1021/acs.jctc.1c00201).

Before using this tool, one need to prepare low-level and high-level QM/MM data:

$$
E_\text{hl}(\mathbf R)=E_\text{hl,QM}(\mathbf R)+E_\text{hl,QM/MM}(\mathbf R)+E_\text{MM}(\mathbf R)
$$

$$
E_\text{ll}(\mathbf R)=E_\text{ll,QM}(\mathbf R)+E_\text{ll,QM/MM}(\mathbf R)+E_\text{MM}(\mathbf R)
$$

Low-level and high-level data should use the same coordinate and the same MM method, but different QM methods. So, the correction energy for training will be

$$
\Delta E (\mathbf R) = E_\text{hl}(\mathbf R) - E_\text{ll}(\mathbf R) = (E_\text{hl,QM}(\mathbf R) - E_\text{ll,QM}(\mathbf R)) + (E_\text{hl,QM/MM}(\mathbf R) - E_\text{ll,QM/MM}(\mathbf R))
$$

An example of the command is
```sh
dpamber corr --cutoff 6. --qm_region ":1" --parm7_file some_param.param7 --nc some_coord.nc --hl high_level --ll low_level --out dataset
```
where `--cutoff` takes cutoff radius of the QM/MM interaction for training. `--qm_region` takes AMBER mask format for the QM region. `--parm7_file` and `--nc` take the PARM7 file and the trajectory (NetCDF) file, respectively. `--ll` and `--hl` are the prefixes of low-level and high-level files, including the mdout file (`.mdout`), the mden file (`.mden`) and the mdfrc file (`.mdfrc`). The output dataset directory should be put in `--out`.

See details from `dpamber corr -h`.

### devi: calculate model deviation

`devi` can be used to calculate the model deviation of a given trajectory.
You need to install DeePMD-kit using
```sh
pip install dpamber[dpgpu]
```

See `dpamber devi -h` for details.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "dpamber",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/a9/de/87ffe2157d65b5a6762a8e36eebba1a21506e802395106b61bb64a0d75c7/dpamber-0.4.0.tar.gz",
    "platform": null,
    "description": "# dpamber\n\nSome useful tools related to Amber and DP.\n\n## Installation\n\n```sh\npip install dpamber\n```\n\n## Tools\n### corr: generating data for DPRc models\n\n[![DOI:10.1021/acs.jctc.1c00201](https://img.shields.io/badge/DOI-10.1021%2Facs.jctc.1c00201-blue)](https://doi.org/10.1021/acs.jctc.1c00201)\n[![Citations](https://citations.njzjz.win/10.1021/acs.jctc.1c00201)](https://doi.org/10.1021/acs.jctc.1c00201)\n\n`corr` tool generates [DeePMD-kit](https://github.com/deepmodeling/deepmd-kit) training data for DPRc from AMBER sander low-level QM/MM data and high-level data. For details of DPRc, read the [DPRc paper](https://doi.org/10.1021/acs.jctc.1c00201).\n\nBefore using this tool, one need to prepare low-level and high-level QM/MM data:\n\n$$\nE_\\text{hl}(\\mathbf R)=E_\\text{hl,QM}(\\mathbf R)+E_\\text{hl,QM/MM}(\\mathbf R)+E_\\text{MM}(\\mathbf R)\n$$\n\n$$\nE_\\text{ll}(\\mathbf R)=E_\\text{ll,QM}(\\mathbf R)+E_\\text{ll,QM/MM}(\\mathbf R)+E_\\text{MM}(\\mathbf R)\n$$\n\nLow-level and high-level data should use the same coordinate and the same MM method, but different QM methods. So, the correction energy for training will be\n\n$$\n\\Delta E (\\mathbf R) = E_\\text{hl}(\\mathbf R) - E_\\text{ll}(\\mathbf R) = (E_\\text{hl,QM}(\\mathbf R) - E_\\text{ll,QM}(\\mathbf R)) + (E_\\text{hl,QM/MM}(\\mathbf R) - E_\\text{ll,QM/MM}(\\mathbf R))\n$$\n\nAn example of the command is\n```sh\ndpamber corr --cutoff 6. --qm_region \":1\" --parm7_file some_param.param7 --nc some_coord.nc --hl high_level --ll low_level --out dataset\n```\nwhere `--cutoff` takes cutoff radius of the QM/MM interaction for training. `--qm_region` takes AMBER mask format for the QM region. `--parm7_file` and `--nc` take the PARM7 file and the trajectory (NetCDF) file, respectively. `--ll` and `--hl` are the prefixes of low-level and high-level files, including the mdout file (`.mdout`), the mden file (`.mden`) and the mdfrc file (`.mdfrc`). The output dataset directory should be put in `--out`.\n\nSee details from `dpamber corr -h`.\n\n### devi: calculate model deviation\n\n`devi` can be used to calculate the model deviation of a given trajectory.\nYou need to install DeePMD-kit using\n```sh\npip install dpamber[dpgpu]\n```\n\nSee `dpamber devi -h` for details.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Some useful tools related to Amber and DP.",
    "version": "0.4.0",
    "project_urls": {
        "Homepage": "https://github.com/njzjz/dpamber"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ddd8843cc354943ae627d860aeeb338737bdba7a0d05b19eb4ce65b0d8b30cd",
                "md5": "95c785659f26ddc39d03fd80f0d09f3b",
                "sha256": "fb6ba9f0b0ca0f90238307155de501d242d724ec19e01978b74bf12de9e10b07"
            },
            "downloads": -1,
            "filename": "dpamber-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "95c785659f26ddc39d03fd80f0d09f3b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 16140,
            "upload_time": "2023-09-09T01:00:10",
            "upload_time_iso_8601": "2023-09-09T01:00:10.536639Z",
            "url": "https://files.pythonhosted.org/packages/5d/dd/8843cc354943ae627d860aeeb338737bdba7a0d05b19eb4ce65b0d8b30cd/dpamber-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a9de87ffe2157d65b5a6762a8e36eebba1a21506e802395106b61bb64a0d75c7",
                "md5": "6b38516268224de59418001677119ae0",
                "sha256": "a3ed36644962c9baf65ca690210cb0d84f1f3b211108faf3fbadae9648dc6630"
            },
            "downloads": -1,
            "filename": "dpamber-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6b38516268224de59418001677119ae0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 300776,
            "upload_time": "2023-09-09T01:00:12",
            "upload_time_iso_8601": "2023-09-09T01:00:12.372629Z",
            "url": "https://files.pythonhosted.org/packages/a9/de/87ffe2157d65b5a6762a8e36eebba1a21506e802395106b61bb64a0d75c7/dpamber-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-09 01:00:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "njzjz",
    "github_project": "dpamber",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "dpamber"
}
        
Elapsed time: 0.23424s