eiq


Nameeiq JSON
Version 2.0.1 PyPI version JSON
download
home_pagehttps://source.codeaurora.org/external/imxsupport/pyeiq/
SummaryA Python Framework for eIQ on i.MX Processors
upload_time2020-06-30 21:38:32
maintainer
docs_urlNone
authorAlifer Moraes, Diego Dorta, Marco Franchi
requires_python
licenseBDS-3-Clause
keywords ml eiq demos apps
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <img src="https://raw.githubusercontent.com/diegohdorta/models/master/media/pyeiq.png" height="191" width="176">
</p>

##  **A Python Framework for eIQ on i.MX Processors**

![pip3][eiqpackage]
[![PyPI version](https://badge.fury.io/py/eiq.svg)](https://badge.fury.io/py/eiq)
![GitHub issues][license]
[![Gitter][gitter-image]][gitter-url]

PyeIQ is written on top of [eIQ™ ML Software Development Environment][eiq] and
provides a set of Python classes allowing the user to run Machine Learning
applications in a simplified and efficiently way without spending time on
cross-compilations, deployments or reading extensive guides.

For further details: [PyeIQ Page][page].

[page]: https://pyeiq.dev/
[eiq]: https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ
[eiqpackage]: https://img.shields.io/badge/pip3%20install-eiq-green
[pypirepo]: https://pypi.org/project/eiq/#description
[pypicaf]: https://source.codeaurora.org/external/imxsupport/pyeiq/
[license]: https://img.shields.io/badge/License-BSD%203--Clause-blue
[gitter-url]: https://gitter.im/pyeiq-imx/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
[gitter-image]: https://badges.gitter.im/pyeiq-imx/community.svg
            

Raw data

            {
    "_id": null,
    "home_page": "https://source.codeaurora.org/external/imxsupport/pyeiq/",
    "name": "eiq",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "ml,eiq,demos,apps",
    "author": "Alifer Moraes, Diego Dorta, Marco Franchi",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/2c/15/64fdd119632bfe42391b2b9dc8d706045ac0d428a30e34f7986b350de917/eiq-2.0.1.tar.gz",
    "platform": "",
    "description": "<p align=\"center\">\n  <img src=\"https://raw.githubusercontent.com/diegohdorta/models/master/media/pyeiq.png\" height=\"191\" width=\"176\">\n</p>\n\n##  **A Python Framework for eIQ on i.MX Processors**\n\n![pip3][eiqpackage]\n[![PyPI version](https://badge.fury.io/py/eiq.svg)](https://badge.fury.io/py/eiq)\n![GitHub issues][license]\n[![Gitter][gitter-image]][gitter-url]\n\nPyeIQ is written on top of [eIQ\u2122 ML Software Development Environment][eiq] and\nprovides a set of Python classes allowing the user to run Machine Learning\napplications in a simplified and efficiently way without spending time on\ncross-compilations, deployments or reading extensive guides.\n\nFor further details: [PyeIQ Page][page].\n\n[page]: https://pyeiq.dev/\n[eiq]: https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ\n[eiqpackage]: https://img.shields.io/badge/pip3%20install-eiq-green\n[pypirepo]: https://pypi.org/project/eiq/#description\n[pypicaf]: https://source.codeaurora.org/external/imxsupport/pyeiq/\n[license]: https://img.shields.io/badge/License-BSD%203--Clause-blue\n[gitter-url]: https://gitter.im/pyeiq-imx/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge\n[gitter-image]: https://badges.gitter.im/pyeiq-imx/community.svg",
    "bugtrack_url": null,
    "license": "BDS-3-Clause",
    "summary": "A Python Framework for eIQ on i.MX Processors",
    "version": "2.0.1",
    "split_keywords": [
        "ml",
        "eiq",
        "demos",
        "apps"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "7ebee8d0bb7211f5e15228f95665d90c",
                "sha256": "672d269474322ae1fbe95446d808c39226b364b1e9809803f9059076c27319e5"
            },
            "downloads": -1,
            "filename": "eiq-2.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7ebee8d0bb7211f5e15228f95665d90c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 31031,
            "upload_time": "2020-06-30T21:38:32",
            "upload_time_iso_8601": "2020-06-30T21:38:32.724983Z",
            "url": "https://files.pythonhosted.org/packages/2c/15/64fdd119632bfe42391b2b9dc8d706045ac0d428a30e34f7986b350de917/eiq-2.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-06-30 21:38:32",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "eiq"
}
        
Elapsed time: 0.11020s