example-package-Akalya


Nameexample-package-Akalya JSON
Version 0.0.1 PyPI version JSON
download
home_page
SummaryA small example package
upload_time2023-09-05 09:53:11
maintainer
docs_urlNone
author
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <<<<<<< HEAD
# mle-training
=======
# mle-training
# Median housing value prediction

The housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. 

The following techniques have been used: 

 - Linear regression
 - Decision Tree
 - Random Forest

## Steps performed
 - We prepare and clean the data. We check and impute for missing values.
 - Features are generated and the variables are checked for correlation.
 - Multiple sampling techinuqies are evaluated. The data set is split into train and test.
 - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.

## To excute the script
python < scriptname.py >


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "example-package-Akalya",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "",
    "author_email": "Example Author <author@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/3f/6a/d1c3941e1cf11f61cb0acbe7dcda587dc519e445808018ffc1258e316bac/example_package_Akalya-0.0.1.tar.gz",
    "platform": null,
    "description": "<<<<<<< HEAD\r\n# mle-training\r\n=======\r\n# mle-training\r\n# Median housing value prediction\r\n\r\nThe housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. \r\n\r\nThe following techniques have been used: \r\n\r\n - Linear regression\r\n - Decision Tree\r\n - Random Forest\r\n\r\n## Steps performed\r\n - We prepare and clean the data. We check and impute for missing values.\r\n - Features are generated and the variables are checked for correlation.\r\n - Multiple sampling techinuqies are evaluated. The data set is split into train and test.\r\n - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.\r\n\r\n## To excute the script\r\npython < scriptname.py >\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A small example package",
    "version": "0.0.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/pypa/sampleproject/issues",
        "Homepage": "https://github.com/pypa/sampleproject"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ab967eb26abad912f80f52c597f510ec324857d71fcacb27d8274572a7c5f733",
                "md5": "014e3e4bc275622bfd6aa6f7483777a3",
                "sha256": "f9ec03ddd00ae57de47182f8ca81c90f69ea2d5c3af98be28a0cedf63cb0e037"
            },
            "downloads": -1,
            "filename": "example_package_Akalya-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "014e3e4bc275622bfd6aa6f7483777a3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 7151,
            "upload_time": "2023-09-05T09:53:09",
            "upload_time_iso_8601": "2023-09-05T09:53:09.903004Z",
            "url": "https://files.pythonhosted.org/packages/ab/96/7eb26abad912f80f52c597f510ec324857d71fcacb27d8274572a7c5f733/example_package_Akalya-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3f6ad1c3941e1cf11f61cb0acbe7dcda587dc519e445808018ffc1258e316bac",
                "md5": "86f3e7de62c078c06b2a53852bb176aa",
                "sha256": "964a1ddc6c2b2189fa2db6a5ee6df33bd707346191f200ee9534781c838dd5b1"
            },
            "downloads": -1,
            "filename": "example_package_Akalya-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "86f3e7de62c078c06b2a53852bb176aa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 5717,
            "upload_time": "2023-09-05T09:53:11",
            "upload_time_iso_8601": "2023-09-05T09:53:11.687868Z",
            "url": "https://files.pythonhosted.org/packages/3f/6a/d1c3941e1cf11f61cb0acbe7dcda587dc519e445808018ffc1258e316bac/example_package_Akalya-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-05 09:53:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pypa",
    "github_project": "sampleproject",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "example-package-akalya"
}
        
Elapsed time: 0.11972s