flask-production


Nameflask-production JSON
Version 3.1.2 PyPI version JSON
download
home_pagehttps://github.com/shashfrankenstien/Flask_Production
Summarycherrypy server for Flask + task scheduler and monitor
upload_time2024-08-04 16:58:22
maintainerNone
docs_urlNone
authorShashank Gopikrishna
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            flask-production
================

Cherrypy prod server for Flask + parallel task scheduler

|Python 3.7| |license| |pytest|

Installation
---------------------

.. code:: sh

   pip install flask_production

Usage example
-------------

CherryFlask
~~~~~~~~~~~~~~~
``Cherrypy`` server on top of ``Flask`` app

.. code:: python

   CherryFlask(app, scheduler=None, silent=False)


Parameters:

- **app** *(Flask)*: ``Flask`` application

- **scheduler** *(TaskScheduler)*: task scheduler to run in parallel with ``Flask`` app

- **silent** *(bool)*: don't print logs
      - default False



.. code:: python

   from flask import Flask
   from flask_production import CherryFlask

   app = Flask(__name__)
   ...

   cherry = CherryFlask(app)
   cherry.run(host="0.0.0.0", port=8080, threads=5, debug=False)

|


TaskScheduler
~~~~~~~~~~~~~~~
| Main class to setup, run and manage jobs


.. code:: python

   TaskScheduler(check_interval=5,
      holidays_calendar=None,
      tzname=None,
      on_job_error=None,
      log_filepath=None,
      log_maxsize=5*1024*1024, # 5 MB
      log_backups=1,
      startup_grace_mins=0, # minutes
      persist_states=True,
      state_handler=None)


Parameters:

- **check_interval** *(int)*: how often to check for pending jobs
      - default 5 seconds

- **holidays_calendar** *(holidays.HolidayBase)*: calendar to use for intervals like ``businessday``
      - default US holidays

- **tzname** *(str)*: name of timezone as supported by dateutil.tz
- **on_job_error** *(func(e))*: function to call if any job fails
- **log_filepath** *(path)*: file to write logs to
- **log_maxsize** *(int)*: byte limit per log file
      - default 5 mb (only effective if log_filepath is provided)
- **log_backups** *(int)*: number of backups of logs to retain
      - default 1 (only effective if log_filepath is provided)
- **startup_grace_mins** *(int)*: grace period for tasks in case a schedule was missed because of app restart
      - default 0
- **persist_states** *(bool)*: store job logs and read back on app restart
      - default True (logs will be stored)
- **state_handler** *(.state.BaseStateHandler)*: different handler backends to store job logs
      - default .state.FileSystemState (logs will be stored in a unique data directory)


Standalone usage

.. code:: python

   from flask_production import TaskScheduler

   sched = TaskScheduler(check_interval=2)

   # Run every minute
   sched.every(60).do(foo)

   # Run on end of every month (with strict_date False)
   sched.every("31st").strict_date(False).at("08:00").do(foo)

   # Run every weekday
   sched.every("weekday").at("08:00").do(lambda:bar())
   sched.every("weekday").at("08:00").timezone("Europe/London").do(lambda:bar())

   # catch() will run on job error
   example_job = sched.every("weekday").at("09:00").do(lambda:failing()).catch(lambda e: print(e))

   # access job information and status as dict
   print(example_job.to_dict())
   print(sched.jobs[-1].to_dict()) # same job

   sched.start() # starts the task scheduler and blocks
..


Instead of ``sched.start()``, TaskScheduler can be run in parallel with a Flask application using ``CherryFlask``

.. code:: python

   from flask import Flask
   from flask_production import TaskScheduler, CherryFlask

   app = Flask(__name__)
   ...

   sched = TaskScheduler()
   ...

   cherry = CherryFlask(app, scheduler=sched)
   cherry.run(host="0.0.0.0", port=8080, threads=5, debug=False)

..


|

TaskMonitor
~~~~~~~~~~~~~~

| The TaskScheduler exposes a list of Job objects through the ``.jobs`` attribute
| Job information and logs from the last execution are available using the ``.to_dict()`` method
| TaskMonitor uses these features to provide a web interface to view and rerun tasks



.. code:: python

   TaskMonitor(
      app,
      sched,
      display_name=None,
      endpoint="@taskmonitor",
      homepage_refresh=30,
      taskpage_refresh=5,
      can_rerun=True,
      can_disable=True)

Parameters:

- **app** *(int)*: ``Flask`` application
- **sched** *(TaskScheduler)*: task scheduler with task definitions
- **display_name** *(str)*: name of the application to be displayed
      - default app.name

- **endpoint** *(str)*: URL endpoint where the taskmonitor can be viewed
      - default "@taskmonitor"
- **homepage_refresh** *(int)*: home page auto refresh interval (in seconds)
      - default 30
- **taskpage_refresh** *(int)*: task page auto refresh interval (in seconds)
      - default 5
- **can_rerun** *(bool)*: if True adds rerun button to job page
      - default True
- **can_disable** *(bool)*: if True adds disable button to job page
      - default True


.. code:: python

   from flask import Flask
   from flask_production import CherryFlask, TaskScheduler
   from flask_production.plugins import TaskMonitor

   app = Flask(__name__)
   sched = TaskScheduler(check_interval=2)

   monitor = TaskMonitor(app, sched)
   print(monitor._endpoint) # /@taskmonitor

   # Run every minute
   sched.every(60).do(foo)

   cherry = CherryFlask(app, scheduler=sched)
   cherry.run(host="0.0.0.0", port=8080) # localhost:8080/@taskmonitor

`Example Gist
here <https://gist.github.com/shashfrankenstien/5cfa8821d74c24fb0a01b979d434e5bb>`__


TODO:
~~~~~~~~~~~~~~

| scheduler - function argument validation


.. |Python 3.7| image:: https://img.shields.io/badge/python-3.7+-blue.svg
.. |license| image:: https://img.shields.io/github/license/shashfrankenstien/flask_production
.. |pytest| image:: https://github.com/shashfrankenstien/Flask_Production/workflows/pytest/badge.svg

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/shashfrankenstien/Flask_Production",
    "name": "flask-production",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Shashank Gopikrishna",
    "author_email": "shashank.gopikrishna@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/cc/df/51ebdd6a9a7f2a27768f31712c07e2df85064515e5f1c9bc372ab70b5d59/flask_production-3.1.2.tar.gz",
    "platform": null,
    "description": "flask-production\n================\n\nCherrypy prod server for Flask + parallel task scheduler\n\n|Python 3.7| |license| |pytest|\n\nInstallation\n---------------------\n\n.. code:: sh\n\n   pip install flask_production\n\nUsage example\n-------------\n\nCherryFlask\n~~~~~~~~~~~~~~~\n``Cherrypy`` server on top of ``Flask`` app\n\n.. code:: python\n\n   CherryFlask(app, scheduler=None, silent=False)\n\n\nParameters:\n\n- **app** *(Flask)*: ``Flask`` application\n\n- **scheduler** *(TaskScheduler)*: task scheduler to run in parallel with ``Flask`` app\n\n- **silent** *(bool)*: don't print logs\n      - default False\n\n\n\n.. code:: python\n\n   from flask import Flask\n   from flask_production import CherryFlask\n\n   app = Flask(__name__)\n   ...\n\n   cherry = CherryFlask(app)\n   cherry.run(host=\"0.0.0.0\", port=8080, threads=5, debug=False)\n\n|\n\n\nTaskScheduler\n~~~~~~~~~~~~~~~\n| Main class to setup, run and manage jobs\n\n\n.. code:: python\n\n   TaskScheduler(check_interval=5,\n      holidays_calendar=None,\n      tzname=None,\n      on_job_error=None,\n      log_filepath=None,\n      log_maxsize=5*1024*1024, # 5 MB\n      log_backups=1,\n      startup_grace_mins=0, # minutes\n      persist_states=True,\n      state_handler=None)\n\n\nParameters:\n\n- **check_interval** *(int)*: how often to check for pending jobs\n      - default 5 seconds\n\n- **holidays_calendar** *(holidays.HolidayBase)*: calendar to use for intervals like ``businessday``\n      - default US holidays\n\n- **tzname** *(str)*: name of timezone as supported by dateutil.tz\n- **on_job_error** *(func(e))*: function to call if any job fails\n- **log_filepath** *(path)*: file to write logs to\n- **log_maxsize** *(int)*: byte limit per log file\n      - default 5 mb (only effective if log_filepath is provided)\n- **log_backups** *(int)*: number of backups of logs to retain\n      - default 1 (only effective if log_filepath is provided)\n- **startup_grace_mins** *(int)*: grace period for tasks in case a schedule was missed because of app restart\n      - default 0\n- **persist_states** *(bool)*: store job logs and read back on app restart\n      - default True (logs will be stored)\n- **state_handler** *(.state.BaseStateHandler)*: different handler backends to store job logs\n      - default .state.FileSystemState (logs will be stored in a unique data directory)\n\n\nStandalone usage\n\n.. code:: python\n\n   from flask_production import TaskScheduler\n\n   sched = TaskScheduler(check_interval=2)\n\n   # Run every minute\n   sched.every(60).do(foo)\n\n   # Run on end of every month (with strict_date False)\n   sched.every(\"31st\").strict_date(False).at(\"08:00\").do(foo)\n\n   # Run every weekday\n   sched.every(\"weekday\").at(\"08:00\").do(lambda:bar())\n   sched.every(\"weekday\").at(\"08:00\").timezone(\"Europe/London\").do(lambda:bar())\n\n   # catch() will run on job error\n   example_job = sched.every(\"weekday\").at(\"09:00\").do(lambda:failing()).catch(lambda e: print(e))\n\n   # access job information and status as dict\n   print(example_job.to_dict())\n   print(sched.jobs[-1].to_dict()) # same job\n\n   sched.start() # starts the task scheduler and blocks\n..\n\n\nInstead of ``sched.start()``, TaskScheduler can be run in parallel with a Flask application using ``CherryFlask``\n\n.. code:: python\n\n   from flask import Flask\n   from flask_production import TaskScheduler, CherryFlask\n\n   app = Flask(__name__)\n   ...\n\n   sched = TaskScheduler()\n   ...\n\n   cherry = CherryFlask(app, scheduler=sched)\n   cherry.run(host=\"0.0.0.0\", port=8080, threads=5, debug=False)\n\n..\n\n\n|\n\nTaskMonitor\n~~~~~~~~~~~~~~\n\n| The TaskScheduler exposes a list of Job objects through the ``.jobs`` attribute\n| Job information and logs from the last execution are available using the ``.to_dict()`` method\n| TaskMonitor uses these features to provide a web interface to view and rerun tasks\n\n\n\n.. code:: python\n\n   TaskMonitor(\n      app,\n      sched,\n      display_name=None,\n      endpoint=\"@taskmonitor\",\n      homepage_refresh=30,\n      taskpage_refresh=5,\n      can_rerun=True,\n      can_disable=True)\n\nParameters:\n\n- **app** *(int)*: ``Flask`` application\n- **sched** *(TaskScheduler)*: task scheduler with task definitions\n- **display_name** *(str)*: name of the application to be displayed\n      - default app.name\n\n- **endpoint** *(str)*: URL endpoint where the taskmonitor can be viewed\n      - default \"@taskmonitor\"\n- **homepage_refresh** *(int)*: home page auto refresh interval (in seconds)\n      - default 30\n- **taskpage_refresh** *(int)*: task page auto refresh interval (in seconds)\n      - default 5\n- **can_rerun** *(bool)*: if True adds rerun button to job page\n      - default True\n- **can_disable** *(bool)*: if True adds disable button to job page\n      - default True\n\n\n.. code:: python\n\n   from flask import Flask\n   from flask_production import CherryFlask, TaskScheduler\n   from flask_production.plugins import TaskMonitor\n\n   app = Flask(__name__)\n   sched = TaskScheduler(check_interval=2)\n\n   monitor = TaskMonitor(app, sched)\n   print(monitor._endpoint) # /@taskmonitor\n\n   # Run every minute\n   sched.every(60).do(foo)\n\n   cherry = CherryFlask(app, scheduler=sched)\n   cherry.run(host=\"0.0.0.0\", port=8080) # localhost:8080/@taskmonitor\n\n`Example Gist\nhere <https://gist.github.com/shashfrankenstien/5cfa8821d74c24fb0a01b979d434e5bb>`__\n\n\nTODO:\n~~~~~~~~~~~~~~\n\n| scheduler - function argument validation\n\n\n.. |Python 3.7| image:: https://img.shields.io/badge/python-3.7+-blue.svg\n.. |license| image:: https://img.shields.io/github/license/shashfrankenstien/flask_production\n.. |pytest| image:: https://github.com/shashfrankenstien/Flask_Production/workflows/pytest/badge.svg\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "cherrypy server for Flask + task scheduler and monitor",
    "version": "3.1.2",
    "project_urls": {
        "Homepage": "https://github.com/shashfrankenstien/Flask_Production"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "20316e429ea923c7eb8175a89fa14ecd8cd931c20398091b2ba327b78b73899b",
                "md5": "7f0fc378cf99ad6e204c74afc66cec67",
                "sha256": "96064c40e9384916b68c165ad41d64ac657f28073d80fd16f9c8943f1dbaebd3"
            },
            "downloads": -1,
            "filename": "flask_production-3.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7f0fc378cf99ad6e204c74afc66cec67",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 36978,
            "upload_time": "2024-08-04T16:58:20",
            "upload_time_iso_8601": "2024-08-04T16:58:20.737434Z",
            "url": "https://files.pythonhosted.org/packages/20/31/6e429ea923c7eb8175a89fa14ecd8cd931c20398091b2ba327b78b73899b/flask_production-3.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ccdf51ebdd6a9a7f2a27768f31712c07e2df85064515e5f1c9bc372ab70b5d59",
                "md5": "2e627c00c66f46ebbdb8e2984d445934",
                "sha256": "5a7be5060725f9ab0a205b884e20fbcd20d0ab3ccc29d490c4bf822498684250"
            },
            "downloads": -1,
            "filename": "flask_production-3.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "2e627c00c66f46ebbdb8e2984d445934",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 38202,
            "upload_time": "2024-08-04T16:58:22",
            "upload_time_iso_8601": "2024-08-04T16:58:22.790696Z",
            "url": "https://files.pythonhosted.org/packages/cc/df/51ebdd6a9a7f2a27768f31712c07e2df85064515e5f1c9bc372ab70b5d59/flask_production-3.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-04 16:58:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "shashfrankenstien",
    "github_project": "Flask_Production",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "flask-production"
}
        
Elapsed time: 0.28762s