glm-mda-diffusion


Nameglm-mda-diffusion JSON
Version 1.1 PyPI version JSON
download
home_pagehttps://github.com/RadostW/glm-mda-diffusion/
SummaryMinimum dissipation approximation: A fast algorithm for the prediction of diffusive properties of intrinsically disordered proteins
upload_time2024-01-05 09:48:36
maintainer
docs_urlNone
authorRadost Waszkiewicz
requires_python
licenseGNU GPLv3
keywords
VCS
bugtrack_url
requirements numpy pygrpy sarw_spheres scipy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # glm_mda_diffusion

## or *Globule-Linker-Model, Minimum-Dissipation-Approximation diffusion coefficient calculator*

![Banner](sequence_and_shape_banner.png)

Minimum dissipation approximation is a fast algorithm for predicting the diffusive properties of intrinsically disordered proteins.

# Installation

```bash
python3 -m pip install glm_mda_diffusion
```

# Usage as module

Basic usage:

```bash
python3 -m glm_mda_diffusion --sequence MGSS[HHHHHH]SSGLVPR
```

Sample output:
```
Computed GLM-MDA hydrodynamic radius [Ang]:
12.279165209438174
```

# Usage as package

Basic usage

```Python
import glm_mda_diffusion
glm_mda_diffusion.hydrodynamic_radius(sequence = "MGSS[HHHHHH]SSGLVPR")
```

Advanced usage (all options displayed with default values).

Options `steric_radius` and `hydrodynamic_radius` controll linker properties, while `effective_density` and `hydrdation_thickness` controll globular region properties.

```Python
import glm_mda_diffusion

glm_mda_diffusion.protein_hydrodynamic_radius(
    sequence="MGSS[HHHHHH]SSGLVPR",
    steric_radius=1.9025,  # Ang
    hydrodynamic_radius=4.2,  # Ang
    effective_density=0.52,  # Da / Ang^3
    hydration_thickness=3.0,  # Ang
    ensemble_size=30,
    bootstrap_rounds=10,
    aminoacid_masses={
        "A": 71.08,
        "C": 103.14,
        "D": 115.09,
        "E": 129.12,
        "F": 147.18,
        "G": 57.06,
        "H": 137.15,
        "I": 113.17,
        "K": 128.18,
        "L": 113.17,
        "M": 131.21,
        "N": 114.11,
        "P": 97.12,
        "Q": 128.41,
        "R": 156.2,
        "S": 87.08,
        "T": 101.11,
        "V": 99.14,
        "W": 186.21,
        "Y": 163.18,
        "Z": 0,
        "O": 0,
        "U": 0,
        "J": 0,
        "X": 0,
        "B": 0,
    },  # Da,
)
```


# License

This software is licensed under GPLv3 License

Copyright (c) Radost Waszkiewicz (2023).

# How to cite

*Minimum dissipation approximation: A fast algorithm for the prediction of diffusive properties of intrinsically disordered proteins.* Radost Waszkiewicz, Agnieszka Michaś, Michał K. Białobrzewski, Barbara P. Klepka, Maja K. Cieplak-Rotowska, Zuzanna Staszałek, Bogdan Cichocki, Maciej Lisicki, Piotr Szymczak, and Anna Niedźwiecka; J. Phys. Chem. Lett. (submitted 2023)

# Bibliography

- *Diffusion coefficients of elastic macromolecules.* B. Cichocki, M. Rubin,  A. Niedzwiecka, and P. Szymczak; J. Fluid Mech. (2019)

- *GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.* P. Zuk, B. Cichocki, and P. Szymczak; Biophysical Journal (2018)

 - *Pychastic: Precise Brownian dynamics using Taylor-Ito integrators in Python.* R. Waszkiewicz, M. Bartczak, K. Kolasa, and M. Lisicki;  SciPost Phys. Codebases (2023)



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/RadostW/glm-mda-diffusion/",
    "name": "glm-mda-diffusion",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Radost Waszkiewicz",
    "author_email": "radost.waszkiewicz@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b5/56/03a3f16d34e92dedbb5044ff592cfb95e79454b759e86a3e8b3d95e64f64/glm_mda_diffusion-1.1.tar.gz",
    "platform": null,
    "description": "# glm_mda_diffusion\n\n## or *Globule-Linker-Model, Minimum-Dissipation-Approximation diffusion coefficient calculator*\n\n![Banner](sequence_and_shape_banner.png)\n\nMinimum dissipation approximation is a fast algorithm for predicting the diffusive properties of intrinsically disordered proteins.\n\n# Installation\n\n```bash\npython3 -m pip install glm_mda_diffusion\n```\n\n# Usage as module\n\nBasic usage:\n\n```bash\npython3 -m glm_mda_diffusion --sequence MGSS[HHHHHH]SSGLVPR\n```\n\nSample output:\n```\nComputed GLM-MDA hydrodynamic radius [Ang]:\n12.279165209438174\n```\n\n# Usage as package\n\nBasic usage\n\n```Python\nimport glm_mda_diffusion\nglm_mda_diffusion.hydrodynamic_radius(sequence = \"MGSS[HHHHHH]SSGLVPR\")\n```\n\nAdvanced usage (all options displayed with default values).\n\nOptions `steric_radius` and `hydrodynamic_radius` controll linker properties, while `effective_density` and `hydrdation_thickness` controll globular region properties.\n\n```Python\nimport glm_mda_diffusion\n\nglm_mda_diffusion.protein_hydrodynamic_radius(\n    sequence=\"MGSS[HHHHHH]SSGLVPR\",\n    steric_radius=1.9025,  # Ang\n    hydrodynamic_radius=4.2,  # Ang\n    effective_density=0.52,  # Da / Ang^3\n    hydration_thickness=3.0,  # Ang\n    ensemble_size=30,\n    bootstrap_rounds=10,\n    aminoacid_masses={\n        \"A\": 71.08,\n        \"C\": 103.14,\n        \"D\": 115.09,\n        \"E\": 129.12,\n        \"F\": 147.18,\n        \"G\": 57.06,\n        \"H\": 137.15,\n        \"I\": 113.17,\n        \"K\": 128.18,\n        \"L\": 113.17,\n        \"M\": 131.21,\n        \"N\": 114.11,\n        \"P\": 97.12,\n        \"Q\": 128.41,\n        \"R\": 156.2,\n        \"S\": 87.08,\n        \"T\": 101.11,\n        \"V\": 99.14,\n        \"W\": 186.21,\n        \"Y\": 163.18,\n        \"Z\": 0,\n        \"O\": 0,\n        \"U\": 0,\n        \"J\": 0,\n        \"X\": 0,\n        \"B\": 0,\n    },  # Da,\n)\n```\n\n\n# License\n\nThis software is licensed under GPLv3 License\n\nCopyright (c) Radost Waszkiewicz (2023).\n\n# How to cite\n\n*Minimum dissipation approximation: A fast algorithm for the prediction of diffusive properties of intrinsically disordered proteins.* Radost Waszkiewicz, Agnieszka Micha\u015b, Micha\u0142 K. Bia\u0142obrzewski, Barbara P. Klepka, Maja K. Cieplak-Rotowska, Zuzanna Stasza\u0142ek, Bogdan Cichocki, Maciej Lisicki, Piotr Szymczak, and Anna Nied\u017awiecka; J. Phys. Chem. Lett. (submitted 2023)\n\n# Bibliography\n\n- *Diffusion coefficients of elastic macromolecules.* B. Cichocki, M. Rubin,  A. Niedzwiecka, and P. Szymczak; J. Fluid Mech. (2019)\n\n- *GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.* P. Zuk, B. Cichocki, and P. Szymczak; Biophysical Journal (2018)\n\n - *Pychastic: Precise Brownian dynamics using Taylor-Ito integrators in Python.* R. Waszkiewicz, M. Bartczak, K. Kolasa, and M. Lisicki;  SciPost Phys. Codebases (2023)\n\n\n",
    "bugtrack_url": null,
    "license": "GNU GPLv3",
    "summary": "Minimum dissipation approximation: A fast algorithm for the prediction of diffusive properties of intrinsically disordered proteins",
    "version": "1.1",
    "project_urls": {
        "Documentation": "https://github.com/RadostW/glm_mda_diffusion",
        "Homepage": "https://github.com/RadostW/glm-mda-diffusion/",
        "Source": "https://github.com/RadostW/glm_mda_diffusion"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c154922115dfe270c4b74c8514e74000b159386754be2d8c9cfc2bad1703d070",
                "md5": "ee46d35629cb562dd208e67e2cdcdba4",
                "sha256": "d7b9b485bee17f7065b240015b8a81bba3cc0281fe052bba6b5a9a098f89df71"
            },
            "downloads": -1,
            "filename": "glm_mda_diffusion-1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ee46d35629cb562dd208e67e2cdcdba4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 18175,
            "upload_time": "2024-01-05T09:48:34",
            "upload_time_iso_8601": "2024-01-05T09:48:34.941219Z",
            "url": "https://files.pythonhosted.org/packages/c1/54/922115dfe270c4b74c8514e74000b159386754be2d8c9cfc2bad1703d070/glm_mda_diffusion-1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b55603a3f16d34e92dedbb5044ff592cfb95e79454b759e86a3e8b3d95e64f64",
                "md5": "466ed951d2a91b34496e20f6d09f5967",
                "sha256": "d283b967256aec6fb3f9f5a6ff2eae72fc09e0089a7ef2f357c20d7c8a832f3d"
            },
            "downloads": -1,
            "filename": "glm_mda_diffusion-1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "466ed951d2a91b34496e20f6d09f5967",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17116,
            "upload_time": "2024-01-05T09:48:36",
            "upload_time_iso_8601": "2024-01-05T09:48:36.781534Z",
            "url": "https://files.pythonhosted.org/packages/b5/56/03a3f16d34e92dedbb5044ff592cfb95e79454b759e86a3e8b3d95e64f64/glm_mda_diffusion-1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-05 09:48:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "RadostW",
    "github_project": "glm-mda-diffusion",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pygrpy",
            "specs": []
        },
        {
            "name": "sarw_spheres",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        }
    ],
    "lcname": "glm-mda-diffusion"
}
        
Elapsed time: 0.20307s