growKNN4fish


NamegrowKNN4fish JSON
Version 3.1.1 PyPI version JSON
download
home_pageNone
Summarygrowable fish classifier, KNN
upload_time2024-09-08 13:21:56
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # fishKNN

물고기의 길이와 무게를 입력하면 해당 물고기가 도미인지 빙어인지 예측하는 프로그램입니다. 예측 후에는 해당 예측이 맞았는지 확인하며, 해당 데이터를 csv로 저장하고 다시 학습을 진행하는 진화형 KNN 프로그램입니다.

### Versions
- `0.5.x` : project init publish. predict & get-pkl.
- `1.2.x` : help msg added.
- `2.0.x` : scatter plot added.
- `3.0.x` : common.py added (remove duplicated code) 

### Installation
```
$ pip install growKNN4fish
```

### Usage
```bash
$ fish-help      # 사용가능한 CLI Command를 출력합니다.
    ╭──────────────────────── 사용할 수 있는 CLI Command ───────────────────────╮
    │                                                                           │
    │ $ fish-predict    # 길이와 무게를 입력받아 물고기의 종류를 예측합니다.    │
    │ $ show-data       # 저장된 csv파일을 DataFrame형식으로 출력합니다.        │
    │ $ get-pkl         # 저장된 pkl파일을 원하는 위치로 복사합니다.            │
    │ $ draw-plot       # 저장된 csv파일을 scatter plot으로 출력합니다.         │
    │                                                                           │
    ╰───────────────────────────────────────────────────────────────────────────╯

$ fish-predict   # 길이와 무게를 입력하면 물고기의 종류를 예측합니다.
🆕 물고기의 길이를 입력하세요(cm) :
🆕 물고기의 무게를 입력하세요(kg) :
🆕 도미가 맞나요? (y/n)
⛔ y 또는 n으로 답해주세요.    # y, n(대소문자 구분X) 외의 값을 입력할 경우 발생. 올바른 값을 입력할 때까지 반복.

🆕 훈련을 시작합니다.
#### scatter plot 출력 (>=v2.0.0)
     ┌─────────────────────────────────────────────────────┐
 2.02┤                                                    *│
     │                                                     │
     │                                                     │
 1.56┤                                                     │
     │                                                     │
     │                                                     │
     │                                           *         │
 1.10┤                                          *          │
     │                                                     │
     │                                                     │
 0.63┤                                                     │
     │                                                     │
     │                                                     │
 0.17┤                                                     │
     │  *                                                  │
     │                                                     │
     │                                                     │
-0.29┤                                                     │
     │                                                     │
     │                                                     │
-0.75┤* *                                                  │
     └┬────────────┬────────────┬────────────┬────────────┬┘
    -0.74        -0.10        0.54         1.18        1.82
Weight                       Length
⛔ 충분한 데이터가 없습니다.    # csv에 저장된 데이터가 1개인 경우
🆕 훈련을 종료합니다. (훈련시간 : 0초)

$ get-pkl   # model.pkl 파일을 원하는 위치에 저장합니다. 추후 테스트를 위해 pkl파일을 가져오기 위한 프로그램입니다.
🆕 pkl파일을 저장할 경로를 입력해주세요(현재 경로기준 상대경로)
 >>> /home/root2/hw/fishKNN/

⛔ 훈련된 pkl파일이 없습니다.       # 저장된 pkl파일이 없는 경우 발생.
⛔ 모델 훈련 후 다시 확인해주세요.
$ show-data # 지금까지 저장된 csv를 DataFrame형태로 출력
   Length  Weight Label
0    35.0   700.0    도미
1    31.5   500.0    도미

⛔ 저장된 데이터가 없습니다.    # 저장된 csv가 없는 경우

$ draw-plot # 지금까지 저장된 csv를 scatter plot으로 출력
     ┌─────────────────────────────────────────────────────┐
 2.02┤                                                    *│
     │                                                     │
     │                                                     │
 1.56┤                                                     │
     │                                                     │
     │                                                     │
     │                                           *         │
 1.10┤                                          *          │
     │                                                     │
     │                                                     │
 0.63┤                                                     │
     │                                                     │
     │                                                     │
 0.17┤                                                     │
     │  *                                                  │
     │                                                     │
     │                                                     │
-0.29┤                                                     │
     │                                                     │
     │                                                     │
-0.75┤* *                                                  │
     └┬────────────┬────────────┬────────────┬────────────┬┘
    -0.74        -0.10        0.54         1.18        1.82
Weight                       Length
```

### Dependency
![pandas>=2.2.2](https://img.shields.io/badge/pandas>=2.2.2-150458.svg?style=for-the-badge&logo=pandas&logoColor=FFFFFF)

![scikit-learn>=1.5.1](https://img.shields.io/badge/scikit--learn>=1.5.1-F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=FFFFFF)

![plotext>=5.2.8](https://img.shields.io/badge/plotext>=5.2.8-000000.svg?style=for-the-badge&logo=python&logoColor=FFFFFF)

### License
- MIT

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "growKNN4fish",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Mingk42 <xoals123456t@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/d5/08/2248d08d674f3b63d7a69cedf0f56054662671c4c3adffb3a53a16ca4e4c/growknn4fish-3.1.1.tar.gz",
    "platform": null,
    "description": "# fishKNN\n\n\ubb3c\uace0\uae30\uc758 \uae38\uc774\uc640 \ubb34\uac8c\ub97c \uc785\ub825\ud558\uba74 \ud574\ub2f9 \ubb3c\uace0\uae30\uac00 \ub3c4\ubbf8\uc778\uc9c0 \ube59\uc5b4\uc778\uc9c0 \uc608\uce21\ud558\ub294 \ud504\ub85c\uadf8\ub7a8\uc785\ub2c8\ub2e4. \uc608\uce21 \ud6c4\uc5d0\ub294 \ud574\ub2f9 \uc608\uce21\uc774 \ub9de\uc558\ub294\uc9c0 \ud655\uc778\ud558\uba70, \ud574\ub2f9 \ub370\uc774\ud130\ub97c csv\ub85c \uc800\uc7a5\ud558\uace0 \ub2e4\uc2dc \ud559\uc2b5\uc744 \uc9c4\ud589\ud558\ub294 \uc9c4\ud654\ud615 KNN \ud504\ub85c\uadf8\ub7a8\uc785\ub2c8\ub2e4.\n\n### Versions\n- `0.5.x` : project init publish. predict & get-pkl.\n- `1.2.x` : help msg added.\n- `2.0.x` : scatter plot added.\n- `3.0.x` : common.py added (remove duplicated code) \n\n### Installation\n```\n$ pip install growKNN4fish\n```\n\n### Usage\n```bash\n$ fish-help      # \uc0ac\uc6a9\uac00\ub2a5\ud55c CLI Command\ub97c \ucd9c\ub825\ud569\ub2c8\ub2e4.\n    \u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 \uc0ac\uc6a9\ud560 \uc218 \uc788\ub294 CLI Command \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e\n    \u2502                                                                           \u2502\n    \u2502 $ fish-predict    # \uae38\uc774\uc640 \ubb34\uac8c\ub97c \uc785\ub825\ubc1b\uc544 \ubb3c\uace0\uae30\uc758 \uc885\ub958\ub97c \uc608\uce21\ud569\ub2c8\ub2e4.    \u2502\n    \u2502 $ show-data       # \uc800\uc7a5\ub41c csv\ud30c\uc77c\uc744 DataFrame\ud615\uc2dd\uc73c\ub85c \ucd9c\ub825\ud569\ub2c8\ub2e4.        \u2502\n    \u2502 $ get-pkl         # \uc800\uc7a5\ub41c pkl\ud30c\uc77c\uc744 \uc6d0\ud558\ub294 \uc704\uce58\ub85c \ubcf5\uc0ac\ud569\ub2c8\ub2e4.            \u2502\n    \u2502 $ draw-plot       # \uc800\uc7a5\ub41c csv\ud30c\uc77c\uc744 scatter plot\uc73c\ub85c \ucd9c\ub825\ud569\ub2c8\ub2e4.         \u2502\n    \u2502                                                                           \u2502\n    \u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\n\n$ fish-predict   # \uae38\uc774\uc640 \ubb34\uac8c\ub97c \uc785\ub825\ud558\uba74 \ubb3c\uace0\uae30\uc758 \uc885\ub958\ub97c \uc608\uce21\ud569\ub2c8\ub2e4.\n\ud83c\udd95 \ubb3c\uace0\uae30\uc758 \uae38\uc774\ub97c \uc785\ub825\ud558\uc138\uc694(cm) :\n\ud83c\udd95 \ubb3c\uace0\uae30\uc758 \ubb34\uac8c\ub97c \uc785\ub825\ud558\uc138\uc694(kg) :\n\ud83c\udd95 \ub3c4\ubbf8\uac00 \ub9de\ub098\uc694? (y/n)\n\u26d4 y \ub610\ub294 n\uc73c\ub85c \ub2f5\ud574\uc8fc\uc138\uc694.    # y, n(\ub300\uc18c\ubb38\uc790 \uad6c\ubd84X) \uc678\uc758 \uac12\uc744 \uc785\ub825\ud560 \uacbd\uc6b0 \ubc1c\uc0dd. \uc62c\ubc14\ub978 \uac12\uc744 \uc785\ub825\ud560 \ub54c\uae4c\uc9c0 \ubc18\ubcf5.\n\n\ud83c\udd95 \ud6c8\ub828\uc744 \uc2dc\uc791\ud569\ub2c8\ub2e4.\n#### scatter plot \ucd9c\ub825 (>=v2.0.0)\n     \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\n 2.02\u2524                                                    *\u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n 1.56\u2524                                                     \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n     \u2502                                           *         \u2502\n 1.10\u2524                                          *          \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n 0.63\u2524                                                     \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n 0.17\u2524                                                     \u2502\n     \u2502  *                                                  \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n-0.29\u2524                                                     \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n-0.75\u2524* *                                                  \u2502\n     \u2514\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2518\n    -0.74        -0.10        0.54         1.18        1.82\nWeight                       Length\n\u26d4 \ucda9\ubd84\ud55c \ub370\uc774\ud130\uac00 \uc5c6\uc2b5\ub2c8\ub2e4.    # csv\uc5d0 \uc800\uc7a5\ub41c \ub370\uc774\ud130\uac00 1\uac1c\uc778 \uacbd\uc6b0\n\ud83c\udd95 \ud6c8\ub828\uc744 \uc885\ub8cc\ud569\ub2c8\ub2e4. (\ud6c8\ub828\uc2dc\uac04 : 0\ucd08)\n\n$ get-pkl   # model.pkl \ud30c\uc77c\uc744 \uc6d0\ud558\ub294 \uc704\uce58\uc5d0 \uc800\uc7a5\ud569\ub2c8\ub2e4. \ucd94\ud6c4 \ud14c\uc2a4\ud2b8\ub97c \uc704\ud574 pkl\ud30c\uc77c\uc744 \uac00\uc838\uc624\uae30 \uc704\ud55c \ud504\ub85c\uadf8\ub7a8\uc785\ub2c8\ub2e4.\n\ud83c\udd95 pkl\ud30c\uc77c\uc744 \uc800\uc7a5\ud560 \uacbd\ub85c\ub97c \uc785\ub825\ud574\uc8fc\uc138\uc694(\ud604\uc7ac \uacbd\ub85c\uae30\uc900 \uc0c1\ub300\uacbd\ub85c)\n >>> /home/root2/hw/fishKNN/\n\n\u26d4 \ud6c8\ub828\ub41c pkl\ud30c\uc77c\uc774 \uc5c6\uc2b5\ub2c8\ub2e4.       # \uc800\uc7a5\ub41c pkl\ud30c\uc77c\uc774 \uc5c6\ub294 \uacbd\uc6b0 \ubc1c\uc0dd.\n\u26d4 \ubaa8\ub378 \ud6c8\ub828 \ud6c4 \ub2e4\uc2dc \ud655\uc778\ud574\uc8fc\uc138\uc694.\n$ show-data # \uc9c0\uae08\uae4c\uc9c0 \uc800\uc7a5\ub41c csv\ub97c DataFrame\ud615\ud0dc\ub85c \ucd9c\ub825\n   Length  Weight Label\n0    35.0   700.0    \ub3c4\ubbf8\n1    31.5   500.0    \ub3c4\ubbf8\n\n\u26d4 \uc800\uc7a5\ub41c \ub370\uc774\ud130\uac00 \uc5c6\uc2b5\ub2c8\ub2e4.    # \uc800\uc7a5\ub41c csv\uac00 \uc5c6\ub294 \uacbd\uc6b0\n\n$ draw-plot # \uc9c0\uae08\uae4c\uc9c0 \uc800\uc7a5\ub41c csv\ub97c scatter plot\uc73c\ub85c \ucd9c\ub825\n     \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\n 2.02\u2524                                                    *\u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n 1.56\u2524                                                     \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n     \u2502                                           *         \u2502\n 1.10\u2524                                          *          \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n 0.63\u2524                                                     \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n 0.17\u2524                                                     \u2502\n     \u2502  *                                                  \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n-0.29\u2524                                                     \u2502\n     \u2502                                                     \u2502\n     \u2502                                                     \u2502\n-0.75\u2524* *                                                  \u2502\n     \u2514\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u252c\u2518\n    -0.74        -0.10        0.54         1.18        1.82\nWeight                       Length\n```\n\n### Dependency\n![pandas>=2.2.2](https://img.shields.io/badge/pandas>=2.2.2-150458.svg?style=for-the-badge&logo=pandas&logoColor=FFFFFF)\n\n![scikit-learn>=1.5.1](https://img.shields.io/badge/scikit--learn>=1.5.1-F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=FFFFFF)\n\n![plotext>=5.2.8](https://img.shields.io/badge/plotext>=5.2.8-000000.svg?style=for-the-badge&logo=python&logoColor=FFFFFF)\n\n### License\n- MIT\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "growable fish classifier, KNN",
    "version": "3.1.1",
    "project_urls": {
        "hompage": "https://github.com/Mingk42/fishKNN",
        "issue": "https://github.com/Mingk42/fishKNN/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd1731bbe64152d05df158e072dcd3810a051bdd898962473ce327b7f138b7f3",
                "md5": "05b4989fea9734b39e00b5b1199b149b",
                "sha256": "abbd8b1e6f826ce6d4e891c68464e6f013f488f2d1425a2e48d336a0d455e039"
            },
            "downloads": -1,
            "filename": "growKNN4fish-3.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "05b4989fea9734b39e00b5b1199b149b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 6952,
            "upload_time": "2024-09-08T13:21:54",
            "upload_time_iso_8601": "2024-09-08T13:21:54.268978Z",
            "url": "https://files.pythonhosted.org/packages/fd/17/31bbe64152d05df158e072dcd3810a051bdd898962473ce327b7f138b7f3/growKNN4fish-3.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d5082248d08d674f3b63d7a69cedf0f56054662671c4c3adffb3a53a16ca4e4c",
                "md5": "081d9538490d9eda620b49484cbb72dd",
                "sha256": "112938464690d08cd71cc837f91232815b7c9bcd033892ef33db0fb439fc17dc"
            },
            "downloads": -1,
            "filename": "growknn4fish-3.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "081d9538490d9eda620b49484cbb72dd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 6467,
            "upload_time": "2024-09-08T13:21:56",
            "upload_time_iso_8601": "2024-09-08T13:21:56.027975Z",
            "url": "https://files.pythonhosted.org/packages/d5/08/2248d08d674f3b63d7a69cedf0f56054662671c4c3adffb3a53a16ca4e4c/growknn4fish-3.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-08 13:21:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Mingk42",
    "github_project": "fishKNN",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "growknn4fish"
}
        
Elapsed time: 0.34785s