hamming_api


Namehamming_api JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/kenibrewer/hamming-api
SummaryA pyspark deployment of an api for querying a sequence database for sequences within a certain hamming distance of a query
upload_time2023-10-22 19:06:59
maintainer
docs_urlNone
authorKen Brewer
requires_python>=3.9,<3.13
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # hamming-api

[![Release](https://img.shields.io/github/v/release/kenibrewer/hamming-api)](https://img.shields.io/github/v/release/kenibrewer/hamming-api)
[![Build status](https://img.shields.io/github/actions/workflow/status/kenibrewer/hamming-api/main.yml?branch=main)](https://github.com/kenibrewer/hamming-api/actions/workflows/main.yml?query=branch%3Amain)
[![codecov](https://codecov.io/gh/kenibrewer/hamming-api/branch/main/graph/badge.svg)](https://codecov.io/gh/kenibrewer/hamming-api)
[![Commit activity](https://img.shields.io/github/commit-activity/m/kenibrewer/hamming-api)](https://img.shields.io/github/commit-activity/m/kenibrewer/hamming-api)
[![License](https://img.shields.io/github/license/kenibrewer/hamming-api)](https://img.shields.io/github/license/kenibrewer/hamming-api)

[IN DEVELOPMENT] A pyspark deployment of an api for querying a sequence database for sequences within a certain hamming distance of a query

- **Github repository**: <https://github.com/kenibrewer/hamming-api/>
- **Documentation** <https://kenibrewer.github.io/hamming-api/>

## Purpose

Sequence hamming distance queries have wide applications in bioinformatics.
Some examples include:

- DNA-encoded chemical libraries
- High-throughput screening of protein variants

This project aims to provide a fast, scalable, and easy-to-use API for querying a sequence database for sequences within a certain hamming distance of a query.

## Development

This project includes a VSCode devcontainer for easy development and testing.
The easiest way to launch it is using [codespaces](https://github.com/features/codespaces) with the button below:

[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/kenibrewer/hamming-api)

To launch the devcontainer locally , you must have [Docker](https://www.docker.com/) installed and follow the instructions below:

- Clone the repo:
  ```bash
  git clone https://github.com/kenibrewer/hamming-api.git
  ```
- Open the command palette (Ctrl+Shift+P) and select `Remote-Containers: Reopen in Container`.
- Wait for the devcontainer to build.
- Open a terminal in VSCode (Ctrl+Shift+`).

## Usage

Start the app with:

```bash
  hamming-api run --debug
```

For more details on available flags see the documentation.

### Database Upload

When the app is started, it creates an upload endpoint at `http://localhost:8080/`.
Navigate to this endpoint in your browser to upload a database.
The database must be a fasta.gz file under 1 MB in size.
The fasta headers should contain the standard refseq header format, e.g.:

```
>lcl|NC_004828.1_cds_NP_852780.1_1 [gene=Rep] [locus_tag=AavAV865gp1] [db_xref=GeneID:1482924] [protein=rep protein] [protein_id=NP_852780.1] [location=244..2232] [gbkey=CDS]`
```

### Querying

Once the database is uploaded, you can query it at `http://localhost:8080/hamming-matches`.
The query should be a JSON object with the following format:

```json
{
  "sequence": "ATCG",
  "distance": 1 //Optional, defaults to 1
}
```

An example query using curl:

```bash
curl -X POST http://localhost:8080/hamming-matches \
    -H 'Content-Type: application/json' \
    -d '{"sequence":"ACGT"}'
```

---

Repository initiated with [fpgmaas/cookiecutter-poetry](https://github.com/fpgmaas/cookiecutter-poetry).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kenibrewer/hamming-api",
    "name": "hamming_api",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<3.13",
    "maintainer_email": "",
    "keywords": "",
    "author": "Ken Brewer",
    "author_email": "fken@kenbrewer.com",
    "download_url": "https://files.pythonhosted.org/packages/f6/5e/7153fcb18804c53521d9475bfc6430534545f53e551fd66e4271694e29b1/hamming_api-0.1.0.tar.gz",
    "platform": null,
    "description": "# hamming-api\n\n[![Release](https://img.shields.io/github/v/release/kenibrewer/hamming-api)](https://img.shields.io/github/v/release/kenibrewer/hamming-api)\n[![Build status](https://img.shields.io/github/actions/workflow/status/kenibrewer/hamming-api/main.yml?branch=main)](https://github.com/kenibrewer/hamming-api/actions/workflows/main.yml?query=branch%3Amain)\n[![codecov](https://codecov.io/gh/kenibrewer/hamming-api/branch/main/graph/badge.svg)](https://codecov.io/gh/kenibrewer/hamming-api)\n[![Commit activity](https://img.shields.io/github/commit-activity/m/kenibrewer/hamming-api)](https://img.shields.io/github/commit-activity/m/kenibrewer/hamming-api)\n[![License](https://img.shields.io/github/license/kenibrewer/hamming-api)](https://img.shields.io/github/license/kenibrewer/hamming-api)\n\n[IN DEVELOPMENT] A pyspark deployment of an api for querying a sequence database for sequences within a certain hamming distance of a query\n\n- **Github repository**: <https://github.com/kenibrewer/hamming-api/>\n- **Documentation** <https://kenibrewer.github.io/hamming-api/>\n\n## Purpose\n\nSequence hamming distance queries have wide applications in bioinformatics.\nSome examples include:\n\n- DNA-encoded chemical libraries\n- High-throughput screening of protein variants\n\nThis project aims to provide a fast, scalable, and easy-to-use API for querying a sequence database for sequences within a certain hamming distance of a query.\n\n## Development\n\nThis project includes a VSCode devcontainer for easy development and testing.\nThe easiest way to launch it is using [codespaces](https://github.com/features/codespaces) with the button below:\n\n[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/kenibrewer/hamming-api)\n\nTo launch the devcontainer locally , you must have [Docker](https://www.docker.com/) installed and follow the instructions below:\n\n- Clone the repo:\n  ```bash\n  git clone https://github.com/kenibrewer/hamming-api.git\n  ```\n- Open the command palette (Ctrl+Shift+P) and select `Remote-Containers: Reopen in Container`.\n- Wait for the devcontainer to build.\n- Open a terminal in VSCode (Ctrl+Shift+`).\n\n## Usage\n\nStart the app with:\n\n```bash\n  hamming-api run --debug\n```\n\nFor more details on available flags see the documentation.\n\n### Database Upload\n\nWhen the app is started, it creates an upload endpoint at `http://localhost:8080/`.\nNavigate to this endpoint in your browser to upload a database.\nThe database must be a fasta.gz file under 1 MB in size.\nThe fasta headers should contain the standard refseq header format, e.g.:\n\n```\n>lcl|NC_004828.1_cds_NP_852780.1_1 [gene=Rep] [locus_tag=AavAV865gp1] [db_xref=GeneID:1482924] [protein=rep protein] [protein_id=NP_852780.1] [location=244..2232] [gbkey=CDS]`\n```\n\n### Querying\n\nOnce the database is uploaded, you can query it at `http://localhost:8080/hamming-matches`.\nThe query should be a JSON object with the following format:\n\n```json\n{\n  \"sequence\": \"ATCG\",\n  \"distance\": 1 //Optional, defaults to 1\n}\n```\n\nAn example query using curl:\n\n```bash\ncurl -X POST http://localhost:8080/hamming-matches \\\n    -H 'Content-Type: application/json' \\\n    -d '{\"sequence\":\"ACGT\"}'\n```\n\n---\n\nRepository initiated with [fpgmaas/cookiecutter-poetry](https://github.com/fpgmaas/cookiecutter-poetry).\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A pyspark deployment of an api for querying a sequence database for sequences within a certain hamming distance of a query",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://kenibrewer.github.io/hamming-api/",
        "Homepage": "https://github.com/kenibrewer/hamming-api",
        "Repository": "https://github.com/kenibrewer/hamming-api"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "87bdc876cef9b79f2cac4509da36ab77a4a66acdabdefad6a82a158796debba3",
                "md5": "0ee241f58189f5b6fc13e6703d54b4c9",
                "sha256": "0b7460db17771768519c99b2c5139354989f8effd565e5dcb5801b93f5b0634f"
            },
            "downloads": -1,
            "filename": "hamming_api-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0ee241f58189f5b6fc13e6703d54b4c9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<3.13",
            "size": 8887,
            "upload_time": "2023-10-22T19:06:56",
            "upload_time_iso_8601": "2023-10-22T19:06:56.195692Z",
            "url": "https://files.pythonhosted.org/packages/87/bd/c876cef9b79f2cac4509da36ab77a4a66acdabdefad6a82a158796debba3/hamming_api-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f65e7153fcb18804c53521d9475bfc6430534545f53e551fd66e4271694e29b1",
                "md5": "8db6fa8169696714d979ac8d5e79c96b",
                "sha256": "907b9dffa015a84cc3de8bd04ee1f45bc2677a48fd39501ab3119cf56346fb94"
            },
            "downloads": -1,
            "filename": "hamming_api-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8db6fa8169696714d979ac8d5e79c96b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<3.13",
            "size": 8500,
            "upload_time": "2023-10-22T19:06:59",
            "upload_time_iso_8601": "2023-10-22T19:06:59.104413Z",
            "url": "https://files.pythonhosted.org/packages/f6/5e/7153fcb18804c53521d9475bfc6430534545f53e551fd66e4271694e29b1/hamming_api-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-22 19:06:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kenibrewer",
    "github_project": "hamming-api",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "hamming_api"
}
        
Elapsed time: 0.13207s