# HF-fastup
Pushes a HF dataset to the HF hub as a Parquet dataset, allowing streaming.
The dataset is processed to shards and uploaded in parallel. It useful for large datasets, for example, with embedded data.
## Usage
Make sure hf_transfer is installed and `HF_HUB_ENABLE_HF_TRANSFER` is set to `1`.
```python
import hffastup
import datasets
datasets.logging.set_verbosity_info()
# load any HF dataset
dataset = datasets.load_dataset("my_large_dataset.py")
hffastup.upload_to_hf_hub(dataset, "Org/repo") # upload to HF Hub
hffastup.push_dataset_card(dataset, "Org/repo") # Makes a dataset card and pushes it to HF Hub
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kkoutini/hf-fastup",
"name": "hf-fastup",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Khaled Koutini",
"author_email": "first.last@jku.at",
"download_url": "https://files.pythonhosted.org/packages/ec/a5/39d0568aae1a34384011294f041d4e1b967d1c97f2f65f5734f2c58d5bac/hf-fastup-0.0.7.tar.gz",
"platform": null,
"description": "# HF-fastup\n\nPushes a HF dataset to the HF hub as a Parquet dataset, allowing streaming.\nThe dataset is processed to shards and uploaded in parallel. It useful for large datasets, for example, with embedded data.\n\n## Usage\n\nMake sure hf_transfer is installed and `HF_HUB_ENABLE_HF_TRANSFER` is set to `1`.\n\n```python\nimport hffastup\nimport datasets\ndatasets.logging.set_verbosity_info()\n\n# load any HF dataset\ndataset = datasets.load_dataset(\"my_large_dataset.py\")\n\nhffastup.upload_to_hf_hub(dataset, \"Org/repo\") # upload to HF Hub\nhffastup.push_dataset_card(dataset, \"Org/repo\") # Makes a dataset card and pushes it to HF Hub\n\n```\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Fast upload in parallel large datasets to HuggingFace Datasets hub.",
"version": "0.0.7",
"project_urls": {
"Bug Tracker": "https://github.com/kkoutini/hf-fastup/issues",
"Homepage": "https://github.com/kkoutini/hf-fastup",
"Source Code": "https://github.com/kkoutini/hf-fastup"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2466c04abf09fa7a2945f83d449b7a51bc6658852563af91e77787ef24604287",
"md5": "10ea5a9042bb85627075d5084cfef120",
"sha256": "861a57cc1b690de39ffdbdda1d77b3c3f28beb180a7e88df560cf5e51eb87e6f"
},
"downloads": -1,
"filename": "hf_fastup-0.0.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "10ea5a9042bb85627075d5084cfef120",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 6231,
"upload_time": "2024-02-16T13:33:07",
"upload_time_iso_8601": "2024-02-16T13:33:07.890965Z",
"url": "https://files.pythonhosted.org/packages/24/66/c04abf09fa7a2945f83d449b7a51bc6658852563af91e77787ef24604287/hf_fastup-0.0.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "eca539d0568aae1a34384011294f041d4e1b967d1c97f2f65f5734f2c58d5bac",
"md5": "7abaa48912c08f4419535fce1fd85d33",
"sha256": "fda4046498680ab173ed5147d847b85657434331900e787d9da73f297c3bca10"
},
"downloads": -1,
"filename": "hf-fastup-0.0.7.tar.gz",
"has_sig": false,
"md5_digest": "7abaa48912c08f4419535fce1fd85d33",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 5944,
"upload_time": "2024-02-16T13:33:09",
"upload_time_iso_8601": "2024-02-16T13:33:09.138322Z",
"url": "https://files.pythonhosted.org/packages/ec/a5/39d0568aae1a34384011294f041d4e1b967d1c97f2f65f5734f2c58d5bac/hf-fastup-0.0.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-16 13:33:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kkoutini",
"github_project": "hf-fastup",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "hf-fastup"
}