housing-price-prediction-NR


Namehousing-price-prediction-NR JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/nehaaa1111/mle-training
SummaryA package for predicting housing prices using machine learning models
upload_time2024-09-09 15:13:04
maintainerNone
docs_urlNone
authorNeha Rawat
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Median housing value prediction

The housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. 

The following techniques have been used: 

 - Linear regression
 - Decision Tree
 - Random Forest

## Steps performed
 - We prepare and clean the data. We check and impute for missing values.
 - Features are generated and the variables are checked for correlation.
 - Multiple sampling techinuqies are evaluated. The data set is split into train and test.
 - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.

## To excute the script
python nonstandardcode.py

## Installation
1. **Clone the repository:**

```bash
git clone https://github.com/yourusername/your-repo-name.git
cd your-repo-name

2. Setup conda environment

conda env create -f env.yaml

3. Activate the environment

conda activate myenv

4. Install the package

pip install -e .

Run tests - pytest tests/

5. Running the Code
## Running the Code

1. **Ingest Data:**

- Use the `ingest_data.py` script to download and create training and validation datasets.

```bash
python src/your_package/ingest_data.py --output ./data

2. Run the train.py script to train your model. 

python src/your_package/train.py --input ./data --output ./artifacts

3. Score the Model:

python src/your_package/score.py --model ./artifacts --data ./data --output ./results



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/nehaaa1111/mle-training",
    "name": "housing-price-prediction-NR",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Neha Rawat",
    "author_email": "neha.rawat@tigeranalytics.com",
    "download_url": null,
    "platform": null,
    "description": "# Median housing value prediction\r\n\r\nThe housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. \r\n\r\nThe following techniques have been used: \r\n\r\n - Linear regression\r\n - Decision Tree\r\n - Random Forest\r\n\r\n## Steps performed\r\n - We prepare and clean the data. We check and impute for missing values.\r\n - Features are generated and the variables are checked for correlation.\r\n - Multiple sampling techinuqies are evaluated. The data set is split into train and test.\r\n - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.\r\n\r\n## To excute the script\r\npython nonstandardcode.py\r\n\r\n## Installation\r\n1. **Clone the repository:**\r\n\r\n```bash\r\ngit clone https://github.com/yourusername/your-repo-name.git\r\ncd your-repo-name\r\n\r\n2. Setup conda environment\r\n\r\nconda env create -f env.yaml\r\n\r\n3. Activate the environment\r\n\r\nconda activate myenv\r\n\r\n4. Install the package\r\n\r\npip install -e .\r\n\r\nRun tests - pytest tests/\r\n\r\n5. Running the Code\r\n## Running the Code\r\n\r\n1. **Ingest Data:**\r\n\r\n- Use the `ingest_data.py` script to download and create training and validation datasets.\r\n\r\n```bash\r\npython src/your_package/ingest_data.py --output ./data\r\n\r\n2. Run the train.py script to train your model. \r\n\r\npython src/your_package/train.py --input ./data --output ./artifacts\r\n\r\n3. Score the Model:\r\n\r\npython src/your_package/score.py --model ./artifacts --data ./data --output ./results\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A package for predicting housing prices using machine learning models",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/nehaaa1111/mle-training"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b16fc335399e4ac90bc0241a2b0ecb4eab06b9cee6ef29d8f7ff5a5be183babf",
                "md5": "dbffa00a7ddf9bc5c9af2a6c5b12302e",
                "sha256": "2199a8454b1840bf4b7998116c0783a4bcf7baff7e335e4dff9bdab40af92c2c"
            },
            "downloads": -1,
            "filename": "housing_price_prediction_NR-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dbffa00a7ddf9bc5c9af2a6c5b12302e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 2433,
            "upload_time": "2024-09-09T15:13:04",
            "upload_time_iso_8601": "2024-09-09T15:13:04.971708Z",
            "url": "https://files.pythonhosted.org/packages/b1/6f/c335399e4ac90bc0241a2b0ecb4eab06b9cee6ef29d8f7ff5a5be183babf/housing_price_prediction_NR-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-09 15:13:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nehaaa1111",
    "github_project": "mle-training",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "housing-price-prediction-nr"
}
        
Elapsed time: 0.32063s