hyperdrive


Namehyperdrive JSON
Version 1.10.11 PyPI version JSON
download
home_pagehttps://github.com/suchak1/hyperdrive
SummaryAn algorithmic trading platform
upload_time2023-07-08 05:24:34
maintainer
docs_urlNone
authorKrish Suchak
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements python-dotenv pandas robin-stocks boto3 polygon-api-client pytz vectorbt scipy scikit-learn auto-sklearn cryptography ta python-binance imbalanced-learn icosphere pynisher numpy selenium
Travis-CI No Travis.
coveralls test coverage No coveralls.
            | <img src="https://raw.githubusercontent.com/suchak1/hyperdrive/master/img/nasa_5mb_cropped.gif" width="250" /> | **_hyperdrive_**: an algorithmic trading library |
| -------------------------------------------------------------------------------------------------------------- | ------------------------------------------------ |

<!-- max width 600 -->

![Build Pipeline](https://github.com/suchak1/hyperdrive/workflows/Build%20Pipeline/badge.svg) ![Dev Pipeline](https://github.com/suchak1/hyperdrive/workflows/Dev%20Pipeline/badge.svg) ![New Release](https://github.com/suchak1/hyperdrive/workflows/New%20Release/badge.svg) [![Downloads](https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=red&right_color=red&left_text=downloads)](https://pepy.tech/project/hyperdrive) ![PyPI](https://img.shields.io/pypi/v/hyperdrive?color=yellow)

<!-- all green https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=brightgreen&right_color=brightgreen&left_text=Downloads -->
<!-- all black https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=black&right_color=black&left_text=Downloads-->
<!-- too bright https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=grey&right_color=yellow&left_text=Downloads -->
<!-- green left, gray right https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=brightgreen&right_color=gray&left_text=Downloads-->
<!-- black and indigo https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=black&right_color=indigo&left_text=Downloads -->

**_hyperdrive_** is an algorithmic trading library that powers quant research firm &nbsp;[<img src="https://raw.githubusercontent.com/suchak1/hyperdrive/master/img/forcepush.png" width="16" /> **FORCEPU.SH**](https://forcepu.sh).

Unlike other backtesting libraries, _`hyperdrive`_ specializes in data collection and quantitative research.

In the examples below, we explore how to:

1. store market data
2. create trading strategies
3. test strategies against historical data (backtesting)
4. execute orders.

## Getting Started

### Prerequisites

You will need Python 3.8+

### Installation

To install the necessary packages, run

```
pythom -m pip install hyperdrive -U
```

## Examples

Most secrets must be passed as environment variables. Future updates will allow secrets to be passed directly into class object (see example on order execution).

<!-- ### 1. Getting data

Pre-requisites:

- an IEXCloud or Polygon API key
- an AWS account and an S3 bucket

Environment Variables:

- `IEXCLOUD` or `POLYGON`
- `AWS_ACCESS_KEY_ID`
- `AWS_SECRET_ACCESS_KEY`
- `AWS_DEFAULT_REGION`
- `S3_BUCKET`

```
from hyperdrive import DataSource
from DataSource import IEXCloud

# Your IEXCloud API token must be an environment variable (accessible in os.environ['IEXCLOUD'])

iex = IEXCloud()
df = iex.get_ohlc(symbol='TSLA', timeframe='7d')
print(df)
```

Output:

```
           Time     Open       High      Low    Close       Vol
2863 2021-11-10  1010.41  1078.1000   987.31  1067.95  42802722
2864 2021-11-11  1102.77  1104.9700  1054.68  1063.51  22396568
2865 2021-11-12  1047.50  1054.5000  1019.20  1033.42  25573148
2866 2021-11-15  1017.63  1031.9800   978.60  1013.39  34775649
2867 2021-11-16  1003.31  1057.1999  1002.18  1054.73  26542359
```

Although this function won't save data to the S3 bucket, hyperdrive checks the S3 bucket with key `data/ohlc/iexcloud/TSLA.csv` to see if any cached data exists to correct for inconsistencies in values and column names. -->

### 1. Storing data

Pre-requisites:

- an IEXCloud or Polygon API key
- an AWS account and an S3 bucket

Environment Variables:

- `IEXCLOUD` or `POLYGON`
- `AWS_ACCESS_KEY_ID`
- `AWS_SECRET_ACCESS_KEY`
- `AWS_DEFAULT_REGION`
- `S3_BUCKET`

```
from hyperdrive import DataSource
from DataSource import IEXCloud, MarketData

# IEXCloud API token loaded as an environment variable (os.environ['IEXCLOUD'])

symbol = 'TSLA'
timeframe = '7d'

md = MarketData()
iex = IEXCloud()

iex.save_ohlc(symbol=symbol, timeframe=timeframe)
df = md.get_ohlc(symbol=symbol, timeframe=timeframe)

print(df)
```

Output:

```
           Time     Open       High      Low    Close       Vol
2863 2021-11-10  1010.41  1078.1000   987.31  1067.95  42802722
2864 2021-11-11  1102.77  1104.9700  1054.68  1063.51  22396568
2865 2021-11-12  1047.50  1054.5000  1019.20  1033.42  25573148
2866 2021-11-15  1017.63  1031.9800   978.60  1013.39  34775649
2867 2021-11-16  1003.31  1057.1999  1002.18  1054.73  26542359
```

### 2. Creating a model

Much of this code is still closed-source, but you can take a look at the [`Historian` class in the `History` module](https://github.com/suchak1/hyperdrive/blob/master/hyperdrive/History.py) for some ideas.

### 3. Backtesting a strategy

We use [_vectorbt_](https://vectorbt.dev/) to backtest strategies.

```
from hyperdrive import History, DataSource, Constants as C
from History import Historian
from DataSource import MarketData

hist = Historian()
md = MarketData()

symbol = 'TSLA'
timeframe = '1y'

df = md.get_ohlc(symbol=symbol, timeframe=timeframe)

holding = hist.buy_and_hold(df[C.CLOSE])
signals = hist.get_optimal_signals(df[C.CLOSE])
my_strat = hist.create_portfolio(df[C.CLOSE], signals)

metrics = [
    'Total Return [%]', 'Benchmark Return [%]',
    'Max Drawdown [%]', 'Max Drawdown Duration',
    'Total Trades', 'Win Rate [%]', 'Avg Winning Trade [%]',
    'Avg Losing Trade [%]', 'Profit Factor',
    'Expectancy', 'Sharpe Ratio', 'Calmar Ratio',
    'Omega Ratio', 'Sortino Ratio'
]

holding_stats = holding.stats()[metrics]
my_strat_stats = my_strat.stats()[metrics]

print(f'Buy and Hold Strat\n{"-"*42}')
print(holding_stats)

print(f'My Strategy\n{"-"*42}')
print(my_strat_stats)

# holding.plot()
my_strat.plot()
```

Output:

```
Buy and Hold Strat
------------------------------------------
Total Return [%]                138.837436
Benchmark Return [%]            138.837436
Max Drawdown [%]                 36.246589
Max Drawdown Duration    186 days 00:00:00
Total Trades                             1
Win Rate [%]                           NaN
Avg Winning Trade [%]                  NaN
Avg Losing Trade [%]                   NaN
Profit Factor                          NaN
Expectancy                             NaN
Sharpe Ratio                      2.206485
Calmar Ratio                      6.977133
Omega Ratio                       1.381816
Sortino Ratio                     3.623509
Name: Close, dtype: object

My Strategy
------------------------------------------
Total Return [%]                364.275727
Benchmark Return [%]            138.837436
Max Drawdown [%]                  35.49422
Max Drawdown Duration    122 days 00:00:00
Total Trades                             6
Win Rate [%]                          80.0
Avg Winning Trade [%]            52.235227
Avg Losing Trade [%]             -3.933059
Profit Factor                     45.00258
Expectancy                      692.157004
Sharpe Ratio                      4.078172
Calmar Ratio                     23.220732
Omega Ratio                       2.098986
Sortino Ratio                     7.727806
Name: Close, dtype: object
```

<img src="https://raw.githubusercontent.com/suchak1/hyperdrive/master/img/my_strat.png">

### 4. Executing an order

Pre-requisites:

- a Binance.US API key

Environment Variables:

- `BINANCE`

```
from pprint import pprint
from hyperdrive import Exchange
from Exchange import Binance

# Binance API token loaded as an environment variable (os.environ['BINANCE'])

bn = Binance()

# use 45% of your USD account balance to buy BTC
order = bn.order('BTC', 'USD', 'BUY', 0.45)

pprint(order)
```

Output:

```
{'clientOrderId': '3cfyrJOSXqq6Zl1RJdeRRC',
 'cummulativeQuoteQty': 46.8315,
 'executedQty': 0.000757,
 'fills': [{'commission': '0.0500',
            'commissionAsset': 'USD',
            'price': '61864.6400',
            'qty': '0.00075700',
            'tradeId': 25803914}],
 'orderId': 714855908,
 'orderListId': -1,
 'origQty': 0.000757,
 'price': 0.0,
 'side': 'SELL',
 'status': 'FILLED',
 'symbol': 'BTCUSD',
 'timeInForce': 'GTC',
 'transactTime': 1637030680121,
 'type': 'MARKET'}
```

## Use

Use the scripts provided in the [`scripts/`](https://github.com/suchak1/hyperdrive/tree/master/scripts) directory as a reference since they are actually used in production daily.

Available data collection functions:

- [x] [![Symbols](https://github.com/suchak1/hyperdrive/workflows/Symbols/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3ASymbols) (from Robinhood)
- [x] [![OHLC](https://github.com/suchak1/hyperdrive/workflows/OHLC/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3AOHLC) (from IEXCloud and Polygon)
- [x] [![Intraday](https://github.com/suchak1/hyperdrive/workflows/Intraday/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3AIntraday) (from IEXCloud and Polygon)
- [x] [![Dividends](https://github.com/suchak1/hyperdrive/workflows/Dividends/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3ADividends) (from IEXCloud and Polygon)
- [x] [![Splits](https://github.com/suchak1/hyperdrive/workflows/Splits/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3ASplits) (from IEXCloud and Polygon)
- [x] [![Social Sentiment](<https://github.com/suchak1/hyperdrive/workflows/Social%20Sentiment%20(1)/badge.svg>)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3A%22Social+Sentiment+%281%29%22) (from StockTwits)
- [x] [![Unemployment](https://github.com/suchak1/hyperdrive/workflows/Unemployment/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3AUnemployment) (from the Bureau of Labor Statistics)

---

<!-- extra -->
<!-- 3. auto update model monthly -->
<!-- abstract away undersample fx from preprocess fx, and buy and sell from order fx, make oracle class -->
<!-- 4. automate saving model and preprocessors (every 2 weeks ) -->
<!-- 5. add live results on website / model vs buying and holding like alphahub - use dash or plotly? use pca visualization, tsne for higher dimensions, roc curve, etc-->

```

```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/suchak1/hyperdrive",
    "name": "hyperdrive",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Krish Suchak",
    "author_email": "suchak.krish@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/80/82/5d55f050114b2444d318b9ec1a640a701335bb389f1b293287fc6d4fa868/hyperdrive-1.10.11.tar.gz",
    "platform": null,
    "description": "| <img src=\"https://raw.githubusercontent.com/suchak1/hyperdrive/master/img/nasa_5mb_cropped.gif\" width=\"250\" /> | **_hyperdrive_**: an algorithmic trading library |\n| -------------------------------------------------------------------------------------------------------------- | ------------------------------------------------ |\n\n<!-- max width 600 -->\n\n![Build Pipeline](https://github.com/suchak1/hyperdrive/workflows/Build%20Pipeline/badge.svg) ![Dev Pipeline](https://github.com/suchak1/hyperdrive/workflows/Dev%20Pipeline/badge.svg) ![New Release](https://github.com/suchak1/hyperdrive/workflows/New%20Release/badge.svg) [![Downloads](https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=red&right_color=red&left_text=downloads)](https://pepy.tech/project/hyperdrive) ![PyPI](https://img.shields.io/pypi/v/hyperdrive?color=yellow)\n\n<!-- all green https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=brightgreen&right_color=brightgreen&left_text=Downloads -->\n<!-- all black https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=black&right_color=black&left_text=Downloads-->\n<!-- too bright https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=grey&right_color=yellow&left_text=Downloads -->\n<!-- green left, gray right https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=brightgreen&right_color=gray&left_text=Downloads-->\n<!-- black and indigo https://static.pepy.tech/personalized-badge/hyperdrive?period=total&units=international_system&left_color=black&right_color=indigo&left_text=Downloads -->\n\n**_hyperdrive_** is an algorithmic trading library that powers quant research firm &nbsp;[<img src=\"https://raw.githubusercontent.com/suchak1/hyperdrive/master/img/forcepush.png\" width=\"16\" /> **FORCEPU.SH**](https://forcepu.sh).\n\nUnlike other backtesting libraries, _`hyperdrive`_ specializes in data collection and quantitative research.\n\nIn the examples below, we explore how to:\n\n1. store market data\n2. create trading strategies\n3. test strategies against historical data (backtesting)\n4. execute orders.\n\n## Getting Started\n\n### Prerequisites\n\nYou will need Python 3.8+\n\n### Installation\n\nTo install the necessary packages, run\n\n```\npythom -m pip install hyperdrive -U\n```\n\n## Examples\n\nMost secrets must be passed as environment variables. Future updates will allow secrets to be passed directly into class object (see example on order execution).\n\n<!-- ### 1. Getting data\n\nPre-requisites:\n\n- an IEXCloud or Polygon API key\n- an AWS account and an S3 bucket\n\nEnvironment Variables:\n\n- `IEXCLOUD` or `POLYGON`\n- `AWS_ACCESS_KEY_ID`\n- `AWS_SECRET_ACCESS_KEY`\n- `AWS_DEFAULT_REGION`\n- `S3_BUCKET`\n\n```\nfrom hyperdrive import DataSource\nfrom DataSource import IEXCloud\n\n# Your IEXCloud API token must be an environment variable (accessible in os.environ['IEXCLOUD'])\n\niex = IEXCloud()\ndf = iex.get_ohlc(symbol='TSLA', timeframe='7d')\nprint(df)\n```\n\nOutput:\n\n```\n           Time     Open       High      Low    Close       Vol\n2863 2021-11-10  1010.41  1078.1000   987.31  1067.95  42802722\n2864 2021-11-11  1102.77  1104.9700  1054.68  1063.51  22396568\n2865 2021-11-12  1047.50  1054.5000  1019.20  1033.42  25573148\n2866 2021-11-15  1017.63  1031.9800   978.60  1013.39  34775649\n2867 2021-11-16  1003.31  1057.1999  1002.18  1054.73  26542359\n```\n\nAlthough this function won't save data to the S3 bucket, hyperdrive checks the S3 bucket with key `data/ohlc/iexcloud/TSLA.csv` to see if any cached data exists to correct for inconsistencies in values and column names. -->\n\n### 1. Storing data\n\nPre-requisites:\n\n- an IEXCloud or Polygon API key\n- an AWS account and an S3 bucket\n\nEnvironment Variables:\n\n- `IEXCLOUD` or `POLYGON`\n- `AWS_ACCESS_KEY_ID`\n- `AWS_SECRET_ACCESS_KEY`\n- `AWS_DEFAULT_REGION`\n- `S3_BUCKET`\n\n```\nfrom hyperdrive import DataSource\nfrom DataSource import IEXCloud, MarketData\n\n# IEXCloud API token loaded as an environment variable (os.environ['IEXCLOUD'])\n\nsymbol = 'TSLA'\ntimeframe = '7d'\n\nmd = MarketData()\niex = IEXCloud()\n\niex.save_ohlc(symbol=symbol, timeframe=timeframe)\ndf = md.get_ohlc(symbol=symbol, timeframe=timeframe)\n\nprint(df)\n```\n\nOutput:\n\n```\n           Time     Open       High      Low    Close       Vol\n2863 2021-11-10  1010.41  1078.1000   987.31  1067.95  42802722\n2864 2021-11-11  1102.77  1104.9700  1054.68  1063.51  22396568\n2865 2021-11-12  1047.50  1054.5000  1019.20  1033.42  25573148\n2866 2021-11-15  1017.63  1031.9800   978.60  1013.39  34775649\n2867 2021-11-16  1003.31  1057.1999  1002.18  1054.73  26542359\n```\n\n### 2. Creating a model\n\nMuch of this code is still closed-source, but you can take a look at the [`Historian` class in the `History` module](https://github.com/suchak1/hyperdrive/blob/master/hyperdrive/History.py) for some ideas.\n\n### 3. Backtesting a strategy\n\nWe use [_vectorbt_](https://vectorbt.dev/) to backtest strategies.\n\n```\nfrom hyperdrive import History, DataSource, Constants as C\nfrom History import Historian\nfrom DataSource import MarketData\n\nhist = Historian()\nmd = MarketData()\n\nsymbol = 'TSLA'\ntimeframe = '1y'\n\ndf = md.get_ohlc(symbol=symbol, timeframe=timeframe)\n\nholding = hist.buy_and_hold(df[C.CLOSE])\nsignals = hist.get_optimal_signals(df[C.CLOSE])\nmy_strat = hist.create_portfolio(df[C.CLOSE], signals)\n\nmetrics = [\n    'Total Return [%]', 'Benchmark Return [%]',\n    'Max Drawdown [%]', 'Max Drawdown Duration',\n    'Total Trades', 'Win Rate [%]', 'Avg Winning Trade [%]',\n    'Avg Losing Trade [%]', 'Profit Factor',\n    'Expectancy', 'Sharpe Ratio', 'Calmar Ratio',\n    'Omega Ratio', 'Sortino Ratio'\n]\n\nholding_stats = holding.stats()[metrics]\nmy_strat_stats = my_strat.stats()[metrics]\n\nprint(f'Buy and Hold Strat\\n{\"-\"*42}')\nprint(holding_stats)\n\nprint(f'My Strategy\\n{\"-\"*42}')\nprint(my_strat_stats)\n\n# holding.plot()\nmy_strat.plot()\n```\n\nOutput:\n\n```\nBuy and Hold Strat\n------------------------------------------\nTotal Return [%]                138.837436\nBenchmark Return [%]            138.837436\nMax Drawdown [%]                 36.246589\nMax Drawdown Duration    186 days 00:00:00\nTotal Trades                             1\nWin Rate [%]                           NaN\nAvg Winning Trade [%]                  NaN\nAvg Losing Trade [%]                   NaN\nProfit Factor                          NaN\nExpectancy                             NaN\nSharpe Ratio                      2.206485\nCalmar Ratio                      6.977133\nOmega Ratio                       1.381816\nSortino Ratio                     3.623509\nName: Close, dtype: object\n\nMy Strategy\n------------------------------------------\nTotal Return [%]                364.275727\nBenchmark Return [%]            138.837436\nMax Drawdown [%]                  35.49422\nMax Drawdown Duration    122 days 00:00:00\nTotal Trades                             6\nWin Rate [%]                          80.0\nAvg Winning Trade [%]            52.235227\nAvg Losing Trade [%]             -3.933059\nProfit Factor                     45.00258\nExpectancy                      692.157004\nSharpe Ratio                      4.078172\nCalmar Ratio                     23.220732\nOmega Ratio                       2.098986\nSortino Ratio                     7.727806\nName: Close, dtype: object\n```\n\n<img src=\"https://raw.githubusercontent.com/suchak1/hyperdrive/master/img/my_strat.png\">\n\n### 4. Executing an order\n\nPre-requisites:\n\n- a Binance.US API key\n\nEnvironment Variables:\n\n- `BINANCE`\n\n```\nfrom pprint import pprint\nfrom hyperdrive import Exchange\nfrom Exchange import Binance\n\n# Binance API token loaded as an environment variable (os.environ['BINANCE'])\n\nbn = Binance()\n\n# use 45% of your USD account balance to buy BTC\norder = bn.order('BTC', 'USD', 'BUY', 0.45)\n\npprint(order)\n```\n\nOutput:\n\n```\n{'clientOrderId': '3cfyrJOSXqq6Zl1RJdeRRC',\n 'cummulativeQuoteQty': 46.8315,\n 'executedQty': 0.000757,\n 'fills': [{'commission': '0.0500',\n            'commissionAsset': 'USD',\n            'price': '61864.6400',\n            'qty': '0.00075700',\n            'tradeId': 25803914}],\n 'orderId': 714855908,\n 'orderListId': -1,\n 'origQty': 0.000757,\n 'price': 0.0,\n 'side': 'SELL',\n 'status': 'FILLED',\n 'symbol': 'BTCUSD',\n 'timeInForce': 'GTC',\n 'transactTime': 1637030680121,\n 'type': 'MARKET'}\n```\n\n## Use\n\nUse the scripts provided in the [`scripts/`](https://github.com/suchak1/hyperdrive/tree/master/scripts) directory as a reference since they are actually used in production daily.\n\nAvailable data collection functions:\n\n- [x] [![Symbols](https://github.com/suchak1/hyperdrive/workflows/Symbols/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3ASymbols) (from Robinhood)\n- [x] [![OHLC](https://github.com/suchak1/hyperdrive/workflows/OHLC/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3AOHLC) (from IEXCloud and Polygon)\n- [x] [![Intraday](https://github.com/suchak1/hyperdrive/workflows/Intraday/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3AIntraday) (from IEXCloud and Polygon)\n- [x] [![Dividends](https://github.com/suchak1/hyperdrive/workflows/Dividends/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3ADividends) (from IEXCloud and Polygon)\n- [x] [![Splits](https://github.com/suchak1/hyperdrive/workflows/Splits/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3ASplits) (from IEXCloud and Polygon)\n- [x] [![Social Sentiment](<https://github.com/suchak1/hyperdrive/workflows/Social%20Sentiment%20(1)/badge.svg>)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3A%22Social+Sentiment+%281%29%22) (from StockTwits)\n- [x] [![Unemployment](https://github.com/suchak1/hyperdrive/workflows/Unemployment/badge.svg)](https://github.com/suchak1/hyperdrive/actions?query=workflow%3AUnemployment) (from the Bureau of Labor Statistics)\n\n---\n\n<!-- extra -->\n<!-- 3. auto update model monthly -->\n<!-- abstract away undersample fx from preprocess fx, and buy and sell from order fx, make oracle class -->\n<!-- 4. automate saving model and preprocessors (every 2 weeks ) -->\n<!-- 5. add live results on website / model vs buying and holding like alphahub - use dash or plotly? use pca visualization, tsne for higher dimensions, roc curve, etc-->\n\n```\n\n```\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "An algorithmic trading platform",
    "version": "1.10.11",
    "project_urls": {
        "Bug Reports": "https://github.com/suchak1/hyperdrive/issues",
        "Homepage": "https://github.com/suchak1/hyperdrive",
        "Source": "https://github.com/suchak1/hyperdrive"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "72b3a13e7e4a730c9dc4303a491f773b40109a988dd295cad366101328f93864",
                "md5": "7a5d70bee2430142ed1bd92dbd52ebec",
                "sha256": "9cc7f7bd750b4d30e5b2ab4c04707c74856af2e40728879958bd4e95d9173b73"
            },
            "downloads": -1,
            "filename": "hyperdrive-1.10.11-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7a5d70bee2430142ed1bd92dbd52ebec",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 30507,
            "upload_time": "2023-07-08T05:24:32",
            "upload_time_iso_8601": "2023-07-08T05:24:32.828382Z",
            "url": "https://files.pythonhosted.org/packages/72/b3/a13e7e4a730c9dc4303a491f773b40109a988dd295cad366101328f93864/hyperdrive-1.10.11-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "80825d55f050114b2444d318b9ec1a640a701335bb389f1b293287fc6d4fa868",
                "md5": "f299ea4c2ea3674d8e7c6bcc4d19c765",
                "sha256": "b23e4ca8a190503107ba2b83fb94dbb123bf159211164675efd1cb4d52abb5b7"
            },
            "downloads": -1,
            "filename": "hyperdrive-1.10.11.tar.gz",
            "has_sig": false,
            "md5_digest": "f299ea4c2ea3674d8e7c6bcc4d19c765",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 41130,
            "upload_time": "2023-07-08T05:24:34",
            "upload_time_iso_8601": "2023-07-08T05:24:34.381936Z",
            "url": "https://files.pythonhosted.org/packages/80/82/5d55f050114b2444d318b9ec1a640a701335bb389f1b293287fc6d4fa868/hyperdrive-1.10.11.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-08 05:24:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "suchak1",
    "github_project": "hyperdrive",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "python-dotenv",
            "specs": [
                [
                    "==",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "1.5.3"
                ]
            ]
        },
        {
            "name": "robin-stocks",
            "specs": [
                [
                    "==",
                    "3.0.4"
                ]
            ]
        },
        {
            "name": "boto3",
            "specs": [
                [
                    "==",
                    "1.26.165"
                ]
            ]
        },
        {
            "name": "polygon-api-client",
            "specs": [
                [
                    "==",
                    "1.10.1"
                ]
            ]
        },
        {
            "name": "pytz",
            "specs": [
                [
                    "==",
                    "2023.3"
                ]
            ]
        },
        {
            "name": "vectorbt",
            "specs": [
                [
                    "==",
                    "0.25.4"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.11.1"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "0.24.2"
                ]
            ]
        },
        {
            "name": "auto-sklearn",
            "specs": [
                [
                    "==",
                    "0.15.0"
                ]
            ]
        },
        {
            "name": "cryptography",
            "specs": [
                [
                    "==",
                    "41.0.1"
                ]
            ]
        },
        {
            "name": "ta",
            "specs": [
                [
                    "==",
                    "0.10.2"
                ]
            ]
        },
        {
            "name": "python-binance",
            "specs": [
                [
                    "==",
                    "1.0.17"
                ]
            ]
        },
        {
            "name": "imbalanced-learn",
            "specs": [
                [
                    "==",
                    "0.8.1"
                ]
            ]
        },
        {
            "name": "icosphere",
            "specs": [
                [
                    "==",
                    "0.1.3"
                ]
            ]
        },
        {
            "name": "pynisher",
            "specs": [
                [
                    "==",
                    "0.6.4"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.23.5"
                ]
            ]
        },
        {
            "name": "selenium",
            "specs": []
        }
    ],
    "lcname": "hyperdrive"
}
        
Elapsed time: 0.12904s