iM-Seeker


NameiM-Seeker JSON
Version 1.0.14 PyPI version JSON
download
home_pagehttps://github.com/YANGB1/iM-Seeker
SummaryiM-Seeker is commandline software designed to predict DNA i-Motif folding status and folding strength.
upload_time2024-01-18 16:23:42
maintainer
docs_urlNone
authorBibo Yang
requires_python
license
keywords
VCS
bugtrack_url
requirements imbalanced_learn imblearn numpy regex xgboost
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # iM-Seeker

iM-Seeker is commandline software designed to predict DNA i-Motif folding status and folding strength.
Details can be found at https://github.com/YANGB1/iM-Seeker

# Installation and Usage
The dependency packages can be installed by:
``` 
pip3 install -r requirements.txt
``` 
iM-Seeker can be installed by:
``` 
pip3 install iM-Seeker
```
Alternatively, the python script 'iM-Seeker.py' can be downloaded directly from Github. The stored directory can be added to the ‘PATH’ environmental variable or the scripts with full path can be run alternatively using command like: 
``` 
python3 iM-Seeker.py -h
``` 
**Please pay attention !!!!!! The program needs two models 'pickle_model_classification.pkl' and 'pickle_model_regression.pkl' which are required as the input files of the software. Please find all the files at https://figshare.com/s/e4e72e2e8ceaa0a4fbd6, where all these files can be downloaded directly.**
  
After intalled the package with 'pip',the help page can be checked by following command:
``` 
iM-Seeker.py -h
``` 
Parameters can be configured according to the user's own needs. Here is an example:
``` 
iM-Seeker.py --sequence input.fa --classification_model pickle_model_classification.pkl --regression_model pickle_model_regression.pkl --overlapped 2 --greedy 2 --stem_short 3 --stem_long 5 --loop1_short 1 --loop1_long 12 --loop2_short 1 --loop2_long 12 --loop3_short 1 --loop3_long 12 --representative_conformation 2 --output_folder output_path
``` 

# Input and output
The input sequences should be in fasta formation, for instance:

\>test1

CCCTCCCCCTCCCCTCCCTCCCCCCCCTCCCCTCCCTCCCTCCCCCCCCTCCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCCCCCCCCTCCTCCCCTCCCCCTCCCCTCCCTCCCTCC

\>test2

CCCCCTCCCCCTCCCCCTCCCCCTCCCCC

\>test3

CCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

\>test4

CCCCGACCCCAACCCCTCCCCCAACCCCTCCCC

The output files are stored in the pre-set output folder.

If --representative_conformation is set as 1, 'iM-seeker_result_average_conformation.txt' includes conformation A of pre-set iM structures. 

If --representative_conformation is set as 2, 'iM-seeker_result_side_shorter_conformation.txt' includes conformation B of pre-set iM structures. 

The prediction result is kept in 'iM-seeker_final_prediction.txt'.

"0" of folding status means unfolded while "1" means folded. Folding strength is a continuous number. 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/YANGB1/iM-Seeker",
    "name": "iM-Seeker",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Bibo Yang",
    "author_email": "biboy5032@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/57/f7/9d2b411499d2d6dcc36c31ebae789ed1027a6a3eb3db889d9052b1c63eb8/iM-Seeker-1.0.14.tar.gz",
    "platform": null,
    "description": "# iM-Seeker\r\n\r\niM-Seeker is commandline software designed to predict DNA i-Motif folding status and folding strength.\r\nDetails can be found at https://github.com/YANGB1/iM-Seeker\r\n\r\n# Installation and Usage\r\nThe dependency packages can be installed by:\r\n``` \r\npip3 install -r requirements.txt\r\n``` \r\niM-Seeker can be installed by:\r\n``` \r\npip3 install iM-Seeker\r\n```\r\nAlternatively, the python script 'iM-Seeker.py' can be downloaded directly from Github. The stored directory can be added to the \u2018PATH\u2019 environmental variable or the scripts with full path can be run alternatively using command like: \r\n``` \r\npython3 iM-Seeker.py -h\r\n``` \r\n**Please pay attention !!!!!! The program needs two models 'pickle_model_classification.pkl' and 'pickle_model_regression.pkl' which are required as the input files of the software. Please find all the files at https://figshare.com/s/e4e72e2e8ceaa0a4fbd6, where all these files can be downloaded directly.**\r\n  \r\nAfter intalled the package with 'pip',the help page can be checked by following command:\r\n``` \r\niM-Seeker.py -h\r\n``` \r\nParameters can be configured according to the user's own needs. Here is an example:\r\n``` \r\niM-Seeker.py --sequence input.fa --classification_model pickle_model_classification.pkl --regression_model pickle_model_regression.pkl --overlapped 2 --greedy 2 --stem_short 3 --stem_long 5 --loop1_short 1 --loop1_long 12 --loop2_short 1 --loop2_long 12 --loop3_short 1 --loop3_long 12 --representative_conformation 2 --output_folder output_path\r\n``` \r\n\r\n# Input and output\r\nThe input sequences should be in fasta formation, for instance:\r\n\r\n\\>test1\r\n\r\nCCCTCCCCCTCCCCTCCCTCCCCCCCCTCCCCTCCCTCCCTCCCCCCCCTCCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCCCCCCCCTCCTCCCCTCCCCCTCCCCTCCCTCCCTCC\r\n\r\n\\>test2\r\n\r\nCCCCCTCCCCCTCCCCCTCCCCCTCCCCC\r\n\r\n\\>test3\r\n\r\nCCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC\r\n\r\n\\>test4\r\n\r\nCCCCGACCCCAACCCCTCCCCCAACCCCTCCCC\r\n\r\nThe output files are stored in the pre-set output folder.\r\n\r\nIf --representative_conformation is set as 1, 'iM-seeker_result_average_conformation.txt' includes conformation A of pre-set iM structures. \r\n\r\nIf --representative_conformation is set as 2, 'iM-seeker_result_side_shorter_conformation.txt' includes conformation B of pre-set iM structures. \r\n\r\nThe prediction result is kept in 'iM-seeker_final_prediction.txt'.\r\n\r\n\"0\" of folding status means unfolded while \"1\" means folded. Folding strength is a continuous number. \r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "iM-Seeker is commandline software designed to predict DNA i-Motif folding status and folding strength.",
    "version": "1.0.14",
    "project_urls": {
        "Homepage": "https://github.com/YANGB1/iM-Seeker"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "57f79d2b411499d2d6dcc36c31ebae789ed1027a6a3eb3db889d9052b1c63eb8",
                "md5": "ad88a1b5674b61153bb50fbaab5ed464",
                "sha256": "028afa626cde34802338a91a7c276de5c6f139844ebe936f564529707a5b40d3"
            },
            "downloads": -1,
            "filename": "iM-Seeker-1.0.14.tar.gz",
            "has_sig": false,
            "md5_digest": "ad88a1b5674b61153bb50fbaab5ed464",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 11258,
            "upload_time": "2024-01-18T16:23:42",
            "upload_time_iso_8601": "2024-01-18T16:23:42.984333Z",
            "url": "https://files.pythonhosted.org/packages/57/f7/9d2b411499d2d6dcc36c31ebae789ed1027a6a3eb3db889d9052b1c63eb8/iM-Seeker-1.0.14.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-18 16:23:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "YANGB1",
    "github_project": "iM-Seeker",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "imbalanced_learn",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "imblearn",
            "specs": [
                [
                    ">=",
                    "0.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.22.4"
                ]
            ]
        },
        {
            "name": "regex",
            "specs": [
                [
                    ">=",
                    "2021.11.10"
                ]
            ]
        },
        {
            "name": "xgboost",
            "specs": [
                [
                    ">=",
                    "1.7.6"
                ]
            ]
        }
    ],
    "lcname": "im-seeker"
}
        
Elapsed time: 0.22143s