image-quality


Nameimage-quality JSON
Version 1.2.7 PyPI version JSON
download
home_pagehttps://github.com/ocampor/image-quality
SummaryImage quality is an open source software library for Automatic Image Quality Assessment (IQA).
upload_time2021-02-15 01:21:31
maintainer
docs_urlNone
authorRicardo Ocampo
requires_python>=3.6
licenseApache 2.0
keywords image quality reference reference-less
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. -*- mode: rst -*-

|Travis|_ |PyPi|_

.. |Travis| image:: https://travis-ci.com/ocampor/image-quality.svg?branch=master
.. _Travis: https://travis-ci.com/ocampor/image-quality

.. |PyPi| image:: https://img.shields.io/pypi/dm/image-quality?color=blue   :alt: PyPI - Downloads
.. _PyPi: https://pypi.org/project/image-quality/

Image Quality
=============

Description
-----------

Image quality is an open source software library for Automatic Image
Quality Assessment (IQA).

Dependencies
------------

-  Python 3.8
-  (Development) Docker

Installation
------------

The package is public and is hosted in PyPi repository. To install it in
your machine run

::

   pip install image-quality

Example
-------

After installing ``image-quality`` package, you can test that it was
successfully installed running the following commands in a python
terminal.

::

   >>> import imquality.brisque as brisque
   >>> import PIL.Image

   >>> path = 'path/to/image'
   >>> img = PIL.Image.open(path)
   >>> brisque.score(img)
   4.9541572815704455


Development
-----------

In case of adding a new tensorflow dataset or modifying the location of a zip file, it is
necessary to update the url checksums. You can find the instructions in the following
`tensorflow documentation <https://www.tensorflow.org/datasets/add_dataset#1_adjust_the_checksums_directory>`_.

The steps to create the url checksums are the following:

1. Take the file with the dataset configuration (e.g. live_iqa.py) an place it in the ``tensorflow_datasets``
folder. The folder is commonly placed in ``${HOME}/.local/lib/python3.8/site-packages`` if you
install the python packages using the ``user`` flag.

2. Modify the ``__init__.py`` of the ``tensorflow_datasets`` to import your new dataset.
For example ``from .image.live_iqa import LiveIQA`` at the top of the file.

3. In your terminal run the commands:
::

   touch url_checksums/live_iqa.txt
   python -m tensorflow_datasets.scripts.download_and_prepare  \
      --register_checksums  \
      --datasets=live_iqa

4. The file ``live_iqa.txt`` is going to contain the checksum. Now you can copy and paste it to your
project's ``url_checksums`` folder.

Sponsor
-------

.. image:: https://github.com/antonreshetov/mysigmail/raw/master/jetbrains.svg?sanitize=true
   :target: <https://www.jetbrains.com/?from=mysigmail>_

Maintainer
----------

- `Ricardo Ocampo <https://ocampor.com>`_



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ocampor/image-quality",
    "name": "image-quality",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "image,quality,reference,reference-less",
    "author": "Ricardo Ocampo",
    "author_email": "me@ocampor.ai",
    "download_url": "https://files.pythonhosted.org/packages/dc/cc/f764594364c84f62f340c808fec276d3d5a8a13acede8631e4dbd2feebcd/image-quality-1.2.7.tar.gz",
    "platform": "",
    "description": ".. -*- mode: rst -*-\n\n|Travis|_ |PyPi|_\n\n.. |Travis| image:: https://travis-ci.com/ocampor/image-quality.svg?branch=master\n.. _Travis: https://travis-ci.com/ocampor/image-quality\n\n.. |PyPi| image:: https://img.shields.io/pypi/dm/image-quality?color=blue   :alt: PyPI - Downloads\n.. _PyPi: https://pypi.org/project/image-quality/\n\nImage Quality\n=============\n\nDescription\n-----------\n\nImage quality is an open source software library for Automatic Image\nQuality Assessment (IQA).\n\nDependencies\n------------\n\n-  Python 3.8\n-  (Development) Docker\n\nInstallation\n------------\n\nThe package is public and is hosted in PyPi repository. To install it in\nyour machine run\n\n::\n\n   pip install image-quality\n\nExample\n-------\n\nAfter installing ``image-quality`` package, you can test that it was\nsuccessfully installed running the following commands in a python\nterminal.\n\n::\n\n   >>> import imquality.brisque as brisque\n   >>> import PIL.Image\n\n   >>> path = 'path/to/image'\n   >>> img = PIL.Image.open(path)\n   >>> brisque.score(img)\n   4.9541572815704455\n\n\nDevelopment\n-----------\n\nIn case of adding a new tensorflow dataset or modifying the location of a zip file, it is\nnecessary to update the url checksums. You can find the instructions in the following\n`tensorflow documentation <https://www.tensorflow.org/datasets/add_dataset#1_adjust_the_checksums_directory>`_.\n\nThe steps to create the url checksums are the following:\n\n1. Take the file with the dataset configuration (e.g. live_iqa.py) an place it in the ``tensorflow_datasets``\nfolder. The folder is commonly placed in ``${HOME}/.local/lib/python3.8/site-packages`` if you\ninstall the python packages using the ``user`` flag.\n\n2. Modify the ``__init__.py`` of the ``tensorflow_datasets`` to import your new dataset.\nFor example ``from .image.live_iqa import LiveIQA`` at the top of the file.\n\n3. In your terminal run the commands:\n::\n\n   touch url_checksums/live_iqa.txt\n   python -m tensorflow_datasets.scripts.download_and_prepare  \\\n      --register_checksums  \\\n      --datasets=live_iqa\n\n4. The file ``live_iqa.txt`` is going to contain the checksum. Now you can copy and paste it to your\nproject's ``url_checksums`` folder.\n\nSponsor\n-------\n\n.. image:: https://github.com/antonreshetov/mysigmail/raw/master/jetbrains.svg?sanitize=true\n   :target: <https://www.jetbrains.com/?from=mysigmail>_\n\nMaintainer\n----------\n\n- `Ricardo Ocampo <https://ocampor.com>`_\n\n\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Image quality is an open source software library for Automatic Image Quality Assessment (IQA).",
    "version": "1.2.7",
    "split_keywords": [
        "image",
        "quality",
        "reference",
        "reference-less"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "3296396f14e0570e087113e11e98fb1d",
                "sha256": "c680c181fb849d5ad6c170e156ec79fb6f7d080e3e1b350016af60b23235aa60"
            },
            "downloads": -1,
            "filename": "image_quality-1.2.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3296396f14e0570e087113e11e98fb1d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 146571,
            "upload_time": "2021-02-15T01:21:30",
            "upload_time_iso_8601": "2021-02-15T01:21:30.591797Z",
            "url": "https://files.pythonhosted.org/packages/0c/b3/e4989110cc889870aa94b34510111ef5b53ab5f1c5664280699866e7bfab/image_quality-1.2.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "423eca4256735edd4f85cafd0ddcd712",
                "sha256": "971afdf53db19afbca62d8b53acc6d217b0e15e2571522705bd5e7b01a5b7265"
            },
            "downloads": -1,
            "filename": "image-quality-1.2.7.tar.gz",
            "has_sig": false,
            "md5_digest": "423eca4256735edd4f85cafd0ddcd712",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 141544,
            "upload_time": "2021-02-15T01:21:31",
            "upload_time_iso_8601": "2021-02-15T01:21:31.759074Z",
            "url": "https://files.pythonhosted.org/packages/dc/cc/f764594364c84f62f340c808fec276d3d5a8a13acede8631e4dbd2feebcd/image-quality-1.2.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2021-02-15 01:21:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": null,
    "github_project": "ocampor",
    "error": "Could not fetch GitHub repository",
    "lcname": "image-quality"
}
        
Elapsed time: 0.22027s