just-bench-it


Namejust-bench-it JSON
Version 0.1.9 PyPI version JSON
download
home_pagehttps://github.com/justbechit/just_bench_it
SummaryA simple benchmarking tool for RL algorithms on Atari games
upload_time2024-08-02 09:41:17
maintainerNone
docs_urlNone
authorstone91
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Just Bench It: RL Algorithm Benchmarking Tool

这个项目提供了一个简单的工具,用于对强化学习(RL)算法在Atari游戏上进行基准测试。
WEBSITE: https://justbechit.github.io/rl_ladder/

## 安装
## PYPI

1. 安装:
   ```
   pip install just-bench-it
   ```

### Build from source

1. 克隆这个仓库:
   ```
   git clone https://github.com/your_username/just_bench_it.git
   cd just_bench_it
   ```

2. 安装依赖:
   ```
   pip install -e .
   ```

## 使用方法

1. 创建你的RL agent类,并使用`@benchmark`装饰器。

2. 在你的agent类中实现以下方法:
   - `set_env_info(self, env_info)`: 设置环境信息
   - `act(self, state)`: 根据当前状态选择动作
   - `update(self, state, action, reward, next_state, done)`: 更新agent的内部状态或模型

3. 运行你的脚本来执行基准测试。

## 示例

这里有一个DQN agent的示例实现:

```python
from just_bench_it import benchmark

@benchmark(pretrained=False, train_episodes=1000, eval_episodes=100)
class DQNAgent:
    def __init__(self):
        # 初始化你的DQN agent
        pass

    def set_env_info(self, env_info):
        # 设置环境信息: bench_it 会提供当前动作空间和观察空间
        #         input_shape = env_info['observation_space'].shape
        #         output_dim = env_info['action_space'].n
        #  不同的环境其输入可能不同,确保您的算法能够应对不同环境
        pass

    def act(self, state):
        # 根据状态选择动作
        pass

    def update(self, state, action, reward, next_state, done):
        # 更新agent
        pass

if __name__ == "__main__":
    agent = DQNAgent()
    results = agent.bench()
    print(results)
```

## 自定义

你可以通过修改`@benchmark`装饰器的参数来自定义基准测试:

- `pretrained`: 是否使用预训练模型(默认为False)
- `train_episodes`: 训练的回合数(默认为1000)
- `eval_episodes`: 评估的回合数(默认为100)

## 结果

基准测试的结果会自动发布为GitHub issue,包含每个环境的平均得分和其他相关信息。

## 贡献

欢迎提交问题报告和拉取请求。对于重大更改,请先开issue讨论您想要更改的内容。

## 许可证

[MIT](https://choosealicense.com/licenses/mit/)



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/justbechit/just_bench_it",
    "name": "just-bench-it",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "stone91",
    "author_email": "370025263@qq.com",
    "download_url": "https://files.pythonhosted.org/packages/aa/e1/8e591c6875814af77f46ad7323356ae200ad1865bb3bb8662275184c9d3e/just_bench_it-0.1.9.tar.gz",
    "platform": null,
    "description": "\n# Just Bench It: RL Algorithm Benchmarking Tool\n\n\u8fd9\u4e2a\u9879\u76ee\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7b80\u5355\u7684\u5de5\u5177\uff0c\u7528\u4e8e\u5bf9\u5f3a\u5316\u5b66\u4e60\uff08RL\uff09\u7b97\u6cd5\u5728Atari\u6e38\u620f\u4e0a\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5\u3002\nWEBSITE: https://justbechit.github.io/rl_ladder/\n\n## \u5b89\u88c5\n## PYPI\n\n1. \u5b89\u88c5\uff1a\n   ```\n   pip install just-bench-it\n   ```\n\n### Build from source\n\n1. \u514b\u9686\u8fd9\u4e2a\u4ed3\u5e93\uff1a\n   ```\n   git clone https://github.com/your_username/just_bench_it.git\n   cd just_bench_it\n   ```\n\n2. \u5b89\u88c5\u4f9d\u8d56\uff1a\n   ```\n   pip install -e .\n   ```\n\n## \u4f7f\u7528\u65b9\u6cd5\n\n1. \u521b\u5efa\u4f60\u7684RL agent\u7c7b\uff0c\u5e76\u4f7f\u7528`@benchmark`\u88c5\u9970\u5668\u3002\n\n2. \u5728\u4f60\u7684agent\u7c7b\u4e2d\u5b9e\u73b0\u4ee5\u4e0b\u65b9\u6cd5\uff1a\n   - `set_env_info(self, env_info)`: \u8bbe\u7f6e\u73af\u5883\u4fe1\u606f\n   - `act(self, state)`: \u6839\u636e\u5f53\u524d\u72b6\u6001\u9009\u62e9\u52a8\u4f5c\n   - `update(self, state, action, reward, next_state, done)`: \u66f4\u65b0agent\u7684\u5185\u90e8\u72b6\u6001\u6216\u6a21\u578b\n\n3. \u8fd0\u884c\u4f60\u7684\u811a\u672c\u6765\u6267\u884c\u57fa\u51c6\u6d4b\u8bd5\u3002\n\n## \u793a\u4f8b\n\n\u8fd9\u91cc\u6709\u4e00\u4e2aDQN agent\u7684\u793a\u4f8b\u5b9e\u73b0\uff1a\n\n```python\nfrom just_bench_it import benchmark\n\n@benchmark(pretrained=False, train_episodes=1000, eval_episodes=100)\nclass DQNAgent:\n    def __init__(self):\n        # \u521d\u59cb\u5316\u4f60\u7684DQN agent\n        pass\n\n    def set_env_info(self, env_info):\n        # \u8bbe\u7f6e\u73af\u5883\u4fe1\u606f\uff1a bench_it \u4f1a\u63d0\u4f9b\u5f53\u524d\u52a8\u4f5c\u7a7a\u95f4\u548c\u89c2\u5bdf\u7a7a\u95f4\n        #         input_shape = env_info['observation_space'].shape\n        #         output_dim = env_info['action_space'].n\n        #  \u4e0d\u540c\u7684\u73af\u5883\u5176\u8f93\u5165\u53ef\u80fd\u4e0d\u540c\uff0c\u786e\u4fdd\u60a8\u7684\u7b97\u6cd5\u80fd\u591f\u5e94\u5bf9\u4e0d\u540c\u73af\u5883\n        pass\n\n    def act(self, state):\n        # \u6839\u636e\u72b6\u6001\u9009\u62e9\u52a8\u4f5c\n        pass\n\n    def update(self, state, action, reward, next_state, done):\n        # \u66f4\u65b0agent\n        pass\n\nif __name__ == \"__main__\":\n    agent = DQNAgent()\n    results = agent.bench()\n    print(results)\n```\n\n## \u81ea\u5b9a\u4e49\n\n\u4f60\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539`@benchmark`\u88c5\u9970\u5668\u7684\u53c2\u6570\u6765\u81ea\u5b9a\u4e49\u57fa\u51c6\u6d4b\u8bd5\uff1a\n\n- `pretrained`: \u662f\u5426\u4f7f\u7528\u9884\u8bad\u7ec3\u6a21\u578b\uff08\u9ed8\u8ba4\u4e3aFalse\uff09\n- `train_episodes`: \u8bad\u7ec3\u7684\u56de\u5408\u6570\uff08\u9ed8\u8ba4\u4e3a1000\uff09\n- `eval_episodes`: \u8bc4\u4f30\u7684\u56de\u5408\u6570\uff08\u9ed8\u8ba4\u4e3a100\uff09\n\n## \u7ed3\u679c\n\n\u57fa\u51c6\u6d4b\u8bd5\u7684\u7ed3\u679c\u4f1a\u81ea\u52a8\u53d1\u5e03\u4e3aGitHub issue\uff0c\u5305\u542b\u6bcf\u4e2a\u73af\u5883\u7684\u5e73\u5747\u5f97\u5206\u548c\u5176\u4ed6\u76f8\u5173\u4fe1\u606f\u3002\n\n## \u8d21\u732e\n\n\u6b22\u8fce\u63d0\u4ea4\u95ee\u9898\u62a5\u544a\u548c\u62c9\u53d6\u8bf7\u6c42\u3002\u5bf9\u4e8e\u91cd\u5927\u66f4\u6539\uff0c\u8bf7\u5148\u5f00issue\u8ba8\u8bba\u60a8\u60f3\u8981\u66f4\u6539\u7684\u5185\u5bb9\u3002\n\n## \u8bb8\u53ef\u8bc1\n\n[MIT](https://choosealicense.com/licenses/mit/)\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A simple benchmarking tool for RL algorithms on Atari games",
    "version": "0.1.9",
    "project_urls": {
        "Homepage": "https://github.com/justbechit/just_bench_it"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "89ea2cf6ff44d01a45ccdf4704bd7ac487c3aa4918c9e9d20785767348f603f2",
                "md5": "faef0b28cf1dd53c0d69bb1be6f29e7a",
                "sha256": "1f5e365c4a611fd9dba9503c2cda3772eb401a0c381fdd3df3afa0a6e7383fe0"
            },
            "downloads": -1,
            "filename": "just_bench_it-0.1.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "faef0b28cf1dd53c0d69bb1be6f29e7a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 8991,
            "upload_time": "2024-08-02T09:41:14",
            "upload_time_iso_8601": "2024-08-02T09:41:14.897951Z",
            "url": "https://files.pythonhosted.org/packages/89/ea/2cf6ff44d01a45ccdf4704bd7ac487c3aa4918c9e9d20785767348f603f2/just_bench_it-0.1.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aae18e591c6875814af77f46ad7323356ae200ad1865bb3bb8662275184c9d3e",
                "md5": "9163bee98c9864fdb0a80cafedc821b5",
                "sha256": "b1928f4839927c39276b92fb6a5445e967ef9656bfc299932260f4742d4d7c63"
            },
            "downloads": -1,
            "filename": "just_bench_it-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "9163bee98c9864fdb0a80cafedc821b5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8670,
            "upload_time": "2024-08-02T09:41:17",
            "upload_time_iso_8601": "2024-08-02T09:41:17.313424Z",
            "url": "https://files.pythonhosted.org/packages/aa/e1/8e591c6875814af77f46ad7323356ae200ad1865bb3bb8662275184c9d3e/just_bench_it-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-02 09:41:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "justbechit",
    "github_project": "just_bench_it",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "just-bench-it"
}
        
Elapsed time: 0.35891s