kernel-quantile-regression


Namekernel-quantile-regression JSON
Version 0.0.15 PyPI version JSON
download
home_pageNone
SummaryKernel quantile regression
upload_time2024-08-10 15:10:23
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Kernel quantile regression
The kernel_quantile_regression package is an open source implementation of the quantile regressor technique introduced in  [[1]](#1).

This repo contains the code for reproducing the research paper [Probabilistic energy forecasting through quantile regression in reproducing kernel Hilbert spaces](https://arxiv.org/pdf/2408.04405). This article has been published in the ACM SIGEnergy Energy Informatics Review.

Example of kernel quantile regression on the Melbourne temperature data [[2]](#2).
![alt text](https://github.com/luca-pernigo/kernel_quantile_regression/blob/main/plots/melbourne/melborune_gaussian_rbf_kernel_quantile_regression.png?raw=true)


## Installation
Use the package manager [pip](https://pypi.org/project/kernel-quantile-regression/) to install kernel_quantile_regression.

```bash
pip install kernel-quantile-regression
```

## Usage

```python
from kernel_quantile_regression.kqr import KQR

# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)

# train model
kqr_1.fit(X_train, y_train)

# predict
kqr_1.predict(X_test)
```
## Repo files
- Data/
The Data directory contains the raw files for the GEFCom2014 challenge [[3]](#3), data can be accessed from Dr. Tao Hong blog http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html. The Data folder contains also the transformed raw data, those constitute the input for our probabilistic forecasting study.

- plots/
Plots for the tutorial and experiments.

- src/kernel_quantile_regression
Source code.

- train_test
scripts to train the models, saved and test them.
    - models
    contains , for each quantile, the pickled trained models.


- utils
Utility functions for extracting, loading and transforming raw data of the GEFCom2014 challenge.

- kqr_tutorial.py
Getting started example, where our method is compared against other valid quantile regressors.

## References
<a id="1">[1]</a> Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non-
parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006),
1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

<a id="2">[2]</a> Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. 1996. Estimating and
visualizing conditional densities. Journal of Computational and Graphical Statistics
5, 4 (1996), 315–336. https://www.jstor.org/stable/1390887

<a id="3">[3]</a> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.Hyndman. 2016b. Probabilistic energy forecasting: Global Energy Forecasting
Competition 2014 and beyond. International Journal of Forecasting 32, 3 (2016),
896–913. https://www.sciencedirect.com/science/article/abs/pii/S0169207016000133?via%3Dihub

## License
[MIT](https://choosealicense.com/licenses/mit/)
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "kernel-quantile-regression",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Luca Pernigo <luca.pernigo@usi.ch>",
    "download_url": "https://files.pythonhosted.org/packages/19/c2/8ddff3dc3083e8cd64b85bc45e74c016d0ad2f2e0c2617da01f6c9b7fafc/kernel_quantile_regression-0.0.15.tar.gz",
    "platform": null,
    "description": "# Kernel quantile regression\nThe kernel_quantile_regression package is an open source implementation of the quantile regressor technique introduced in  [[1]](#1).\n\nThis repo contains the code for reproducing the research paper [Probabilistic energy forecasting through quantile regression in reproducing kernel Hilbert spaces](https://arxiv.org/pdf/2408.04405). This article has been published in the ACM SIGEnergy Energy Informatics Review.\n\nExample of kernel quantile regression on the Melbourne temperature data [[2]](#2).\n![alt text](https://github.com/luca-pernigo/kernel_quantile_regression/blob/main/plots/melbourne/melborune_gaussian_rbf_kernel_quantile_regression.png?raw=true)\n\n\n## Installation\nUse the package manager [pip](https://pypi.org/project/kernel-quantile-regression/) to install kernel_quantile_regression.\n\n```bash\npip install kernel-quantile-regression\n```\n\n## Usage\n\n```python\nfrom kernel_quantile_regression.kqr import KQR\n\n# create model instance\n# specify your quantile q and hyperparameters C and gamma\nkqr_1=KQR(alpha=q, C=100, gamma=0.5)\n\n# train model\nkqr_1.fit(X_train, y_train)\n\n# predict\nkqr_1.predict(X_test)\n```\n## Repo files\n- Data/\nThe Data directory contains the raw files for the GEFCom2014 challenge [[3]](#3), data can be accessed from Dr. Tao Hong blog http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html. The Data folder contains also the transformed raw data, those constitute the input for our probabilistic forecasting study.\n\n- plots/\nPlots for the tutorial and experiments.\n\n- src/kernel_quantile_regression\nSource code.\n\n- train_test\nscripts to train the models, saved and test them.\n    - models\n    contains , for each quantile, the pickled trained models.\n\n\n- utils\nUtility functions for extracting, loading and transforming raw data of the GEFCom2014 challenge.\n\n- kqr_tutorial.py\nGetting started example, where our method is compared against other valid quantile regressors.\n\n## References\n<a id=\"1\">[1]</a> Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non-\nparametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006),\n1231\u20131264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf\n\n<a id=\"2\">[2]</a> Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. 1996. Estimating and\nvisualizing conditional densities. Journal of Computational and Graphical Statistics\n5, 4 (1996), 315\u2013336. https://www.jstor.org/stable/1390887\n\n<a id=\"3\">[3]</a> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.Hyndman. 2016b. Probabilistic energy forecasting: Global Energy Forecasting\nCompetition 2014 and beyond. International Journal of Forecasting 32, 3 (2016),\n896\u2013913. https://www.sciencedirect.com/science/article/abs/pii/S0169207016000133?via%3Dihub\n\n## License\n[MIT](https://choosealicense.com/licenses/mit/)",
    "bugtrack_url": null,
    "license": null,
    "summary": "Kernel quantile regression",
    "version": "0.0.15",
    "project_urls": {
        "Homepage": "https://github.com/luca-pernigo/kernel_quantile_regression"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6335435a9866367baf0532414c3b5ec240201fbc2e59bc10686ea52ff5765b4c",
                "md5": "a2c90e4dafcd31438d7504a4f6daf4f5",
                "sha256": "59c8a6dc0cf055dd242247ddd68361136461c5a050f113a56a81c027d6cb75d6"
            },
            "downloads": -1,
            "filename": "kernel_quantile_regression-0.0.15-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a2c90e4dafcd31438d7504a4f6daf4f5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 6617,
            "upload_time": "2024-08-10T15:10:21",
            "upload_time_iso_8601": "2024-08-10T15:10:21.412199Z",
            "url": "https://files.pythonhosted.org/packages/63/35/435a9866367baf0532414c3b5ec240201fbc2e59bc10686ea52ff5765b4c/kernel_quantile_regression-0.0.15-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "19c28ddff3dc3083e8cd64b85bc45e74c016d0ad2f2e0c2617da01f6c9b7fafc",
                "md5": "e4e65c822289b248b4340eef39c86a02",
                "sha256": "7e533cdc1952c687c8528a894e03281e32f3779b1c1f6f33cdc0ab253fe7b315"
            },
            "downloads": -1,
            "filename": "kernel_quantile_regression-0.0.15.tar.gz",
            "has_sig": false,
            "md5_digest": "e4e65c822289b248b4340eef39c86a02",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 5767,
            "upload_time": "2024-08-10T15:10:23",
            "upload_time_iso_8601": "2024-08-10T15:10:23.278581Z",
            "url": "https://files.pythonhosted.org/packages/19/c2/8ddff3dc3083e8cd64b85bc45e74c016d0ad2f2e0c2617da01f6c9b7fafc/kernel_quantile_regression-0.0.15.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-10 15:10:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "luca-pernigo",
    "github_project": "kernel_quantile_regression",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "kernel-quantile-regression"
}
        
Elapsed time: 0.33372s