knn-j25ng


Nameknn-j25ng JSON
Version 2.0.3 PyPI version JSON
download
home_pageNone
SummaryImplements KNN model using KNeighborsClassifier
upload_time2024-09-09 11:53:30
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Weekly program no.1 - 자가 학습 KNN

## 프로그램 동작 방식
- [ ] 학습된 모델이 없는 상태에서 출발
- [ ] 사용자는 길이, 무게 데이터를 입력하고 프로그램 예측 값을 출력 (이때 프로그램은 학습 데이터가 없어 임의의 값을 예측)
- [ ] 예측값에 대한 정답 유무 입력
- [ ] 프로그램에 입력된 데이터(훈련데이터)와 정답(타겟) 데이터를 저장
- [ ] 위 과정이 반복 되면서 모델을 진화 시켜 나간다.


## usage
```bash
# install
## use git url
$ pip install git+https://github.com/j25ng/knn_j25ng.git
## use pypi
$ pip install knn-j25ng

# data training
$ fish
🐟 물고기의 길이를 입력하세요 (cm): 10.8
🐟 물고기의 무게를 입력하세요  (g): 8.7
🐟 이 물고기는 빙어입니다.
🐟 예측이 맞습니까? (y/n): y
🐟 예측 성공🥳
```

```bash
# data chart(use matplotlib)
$ chart
### display the figure window ###
```
### chart window
<img src="https://github.com/user-attachments/assets/f585310b-d655-4d6e-a411-8648da14eecc" width=600 />

## data
```bash
$ cd ~/code/data
$ tree
.
├── data.json
└── target.json

0 directories, 2 files
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "knn-j25ng",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "j25ng <jsan2861@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/69/d5/934fe427b7312bc04513993972edbae185dcaeee86a847bff819a0b29cae/knn_j25ng-2.0.3.tar.gz",
    "platform": null,
    "description": "# Weekly program no.1 - \uc790\uac00 \ud559\uc2b5 KNN\n\n## \ud504\ub85c\uadf8\ub7a8 \ub3d9\uc791 \ubc29\uc2dd\n- [ ] \ud559\uc2b5\ub41c \ubaa8\ub378\uc774 \uc5c6\ub294 \uc0c1\ud0dc\uc5d0\uc11c \ucd9c\ubc1c\n- [ ] \uc0ac\uc6a9\uc790\ub294 \uae38\uc774, \ubb34\uac8c \ub370\uc774\ud130\ub97c \uc785\ub825\ud558\uace0 \ud504\ub85c\uadf8\ub7a8 \uc608\uce21 \uac12\uc744 \ucd9c\ub825 (\uc774\ub54c \ud504\ub85c\uadf8\ub7a8\uc740 \ud559\uc2b5 \ub370\uc774\ud130\uac00 \uc5c6\uc5b4 \uc784\uc758\uc758 \uac12\uc744 \uc608\uce21)\n- [ ] \uc608\uce21\uac12\uc5d0 \ub300\ud55c \uc815\ub2f5 \uc720\ubb34 \uc785\ub825\n- [ ] \ud504\ub85c\uadf8\ub7a8\uc5d0 \uc785\ub825\ub41c \ub370\uc774\ud130(\ud6c8\ub828\ub370\uc774\ud130)\uc640 \uc815\ub2f5(\ud0c0\uac9f) \ub370\uc774\ud130\ub97c \uc800\uc7a5\n- [ ] \uc704 \uacfc\uc815\uc774 \ubc18\ubcf5 \ub418\uba74\uc11c \ubaa8\ub378\uc744 \uc9c4\ud654 \uc2dc\ucf1c \ub098\uac04\ub2e4.\n\n\n## usage\n```bash\n# install\n## use git url\n$ pip install git+https://github.com/j25ng/knn_j25ng.git\n## use pypi\n$ pip install knn-j25ng\n\n# data training\n$ fish\n\ud83d\udc1f \ubb3c\uace0\uae30\uc758 \uae38\uc774\ub97c \uc785\ub825\ud558\uc138\uc694 (cm): 10.8\n\ud83d\udc1f \ubb3c\uace0\uae30\uc758 \ubb34\uac8c\ub97c \uc785\ub825\ud558\uc138\uc694  (g): 8.7\n\ud83d\udc1f \uc774 \ubb3c\uace0\uae30\ub294 \ube59\uc5b4\uc785\ub2c8\ub2e4.\n\ud83d\udc1f \uc608\uce21\uc774 \ub9de\uc2b5\ub2c8\uae4c? (y/n): y\n\ud83d\udc1f \uc608\uce21 \uc131\uacf5\ud83e\udd73\n```\n\n```bash\n# data chart(use matplotlib)\n$ chart\n### display the figure window ###\n```\n### chart window\n<img src=\"https://github.com/user-attachments/assets/f585310b-d655-4d6e-a411-8648da14eecc\" width=600 />\n\n## data\n```bash\n$ cd ~/code/data\n$ tree\n.\n\u251c\u2500\u2500 data.json\n\u2514\u2500\u2500 target.json\n\n0 directories, 2 files\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Implements KNN model using KNeighborsClassifier",
    "version": "2.0.3",
    "project_urls": {
        "Homepage": "https://github.com/j25ng/knn_j25ng"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f48eb6fb1782d30d5c259d28dd3f9e8194e60dd39778393d561cebb5bda2aa0a",
                "md5": "250431973015baa8b1c5c8808401caf9",
                "sha256": "0360f6cf1f3a5afdc53abf100e583d033602b8847d3164e85b2bd57e705c0c0b"
            },
            "downloads": -1,
            "filename": "knn_j25ng-2.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "250431973015baa8b1c5c8808401caf9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 3569,
            "upload_time": "2024-09-09T11:53:29",
            "upload_time_iso_8601": "2024-09-09T11:53:29.489981Z",
            "url": "https://files.pythonhosted.org/packages/f4/8e/b6fb1782d30d5c259d28dd3f9e8194e60dd39778393d561cebb5bda2aa0a/knn_j25ng-2.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "69d5934fe427b7312bc04513993972edbae185dcaeee86a847bff819a0b29cae",
                "md5": "457f96c9c0f9602d199061e5cf80869a",
                "sha256": "58707269c23adb4fbbd52f93357693430666e523496299b74eac538b65dfac80"
            },
            "downloads": -1,
            "filename": "knn_j25ng-2.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "457f96c9c0f9602d199061e5cf80869a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 3107,
            "upload_time": "2024-09-09T11:53:30",
            "upload_time_iso_8601": "2024-09-09T11:53:30.746714Z",
            "url": "https://files.pythonhosted.org/packages/69/d5/934fe427b7312bc04513993972edbae185dcaeee86a847bff819a0b29cae/knn_j25ng-2.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-09 11:53:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "j25ng",
    "github_project": "knn_j25ng",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "knn-j25ng"
}
        
Elapsed time: 0.40147s