liver-annotation


Nameliver-annotation JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/mThkTrn/liver_annotation
SummaryA machine learning model for classification of cells and annotation of clusters in scRNA-seq data from liver samples.
upload_time2024-08-20 19:37:39
maintainerNone
docs_urlNone
authorMadhavendra Thakur
requires_python>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Liver Annotation

Liver Annotation is a Python package designed to annotate clusters in single-cell RNA sequencing (scRNA-seq) data from liver samples. This package provides a machine learning model that is specifically trained on liver cells, enabling out-of-the-box functionality without the need for pre-existing expert-annotated data.

## Features

- Machine learning model trained specifically on liver cells.
- Supports both neural network and random forest classifier models.
- Annotates clusters using either the most common annotation or probability-based methods.

## Installation

To install the package, use pip:

```bash
pip install liver_annotation
```

## Usage

### Classification of Cells

You can classify cells by cell type using the classify_cells function. The function requires an input in_data which is a standard scanpy/anndata object with gene expression data.

```python
from liver_annotation import classify_cells

# Example usage
classify_cells(ann_data_obj, species="human", model_type="nn")
```

- `species`: Choose between `"human"` or `"mouse"`.
- `model_type`: Choose between `"rfc"` (random forest classifier) or `"nn"` (neural network).

### Cluster Annotation

Annotate clusters using the cluster_annotations function. This function requires an input in_data and allows you to specify the clustering algorithm and model type.

```python
from liver_annotation import cluster_annotations

# Example usage
cluster_annotations(in_data, species="human", clusters="louvain", algorithm="mode", model_type="nn")
```

- `clusters`: The column in `in_data.obs` to use for cluster data.
- `algorithm`: Choose between `"mode"` or `"prob"` for cluster annotation.
- `model_type`: Choose between `"rfc"` or `"nn"`.

## Dependencies

- `torch`
- `joblib`
- `scipy`
- `numpy`
- `scanpy`

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Contributing

Contributions are welcome! Please open an issue or submit a pull request for any improvements or bug fixes.

## Contact

For any questions or issues, please contact Madhavendra Thakur at madhavendra.thakur@gmail.com.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mThkTrn/liver_annotation",
    "name": "liver-annotation",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Madhavendra Thakur",
    "author_email": "madhavendra.thakur@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/89/a7/b68debd628a9e58a10cbff32859d3fc7ccf6b9e2ad99df3d309eb3c38355/liver_annotation-0.1.2.tar.gz",
    "platform": null,
    "description": "# Liver Annotation\r\n\r\nLiver Annotation is a Python package designed to annotate clusters in single-cell RNA sequencing (scRNA-seq) data from liver samples. This package provides a machine learning model that is specifically trained on liver cells, enabling out-of-the-box functionality without the need for pre-existing expert-annotated data.\r\n\r\n## Features\r\n\r\n- Machine learning model trained specifically on liver cells.\r\n- Supports both neural network and random forest classifier models.\r\n- Annotates clusters using either the most common annotation or probability-based methods.\r\n\r\n## Installation\r\n\r\nTo install the package, use pip:\r\n\r\n```bash\r\npip install liver_annotation\r\n```\r\n\r\n## Usage\r\n\r\n### Classification of Cells\r\n\r\nYou can classify cells by cell type using the classify_cells function. The function requires an input in_data which is a standard scanpy/anndata object with gene expression data.\r\n\r\n```python\r\nfrom liver_annotation import classify_cells\r\n\r\n# Example usage\r\nclassify_cells(ann_data_obj, species=\"human\", model_type=\"nn\")\r\n```\r\n\r\n- `species`: Choose between `\"human\"` or `\"mouse\"`.\r\n- `model_type`: Choose between `\"rfc\"` (random forest classifier) or `\"nn\"` (neural network).\r\n\r\n### Cluster Annotation\r\n\r\nAnnotate clusters using the cluster_annotations function. This function requires an input in_data and allows you to specify the clustering algorithm and model type.\r\n\r\n```python\r\nfrom liver_annotation import cluster_annotations\r\n\r\n# Example usage\r\ncluster_annotations(in_data, species=\"human\", clusters=\"louvain\", algorithm=\"mode\", model_type=\"nn\")\r\n```\r\n\r\n- `clusters`: The column in `in_data.obs` to use for cluster data.\r\n- `algorithm`: Choose between `\"mode\"` or `\"prob\"` for cluster annotation.\r\n- `model_type`: Choose between `\"rfc\"` or `\"nn\"`.\r\n\r\n## Dependencies\r\n\r\n- `torch`\r\n- `joblib`\r\n- `scipy`\r\n- `numpy`\r\n- `scanpy`\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License - see the LICENSE file for details.\r\n\r\n## Contributing\r\n\r\nContributions are welcome! Please open an issue or submit a pull request for any improvements or bug fixes.\r\n\r\n## Contact\r\n\r\nFor any questions or issues, please contact Madhavendra Thakur at madhavendra.thakur@gmail.com.\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A machine learning model for classification of cells and annotation of clusters in scRNA-seq data from liver samples.",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/mThkTrn/liver_annotation"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5131272f10f8d8b5baac24d39940a0dea47787924553dda03f881d71dc04e720",
                "md5": "8fc284105dd9efa8cda287a4fe2bfe0f",
                "sha256": "3ef3a78cf43474d5104429a3bfddf8e0f6f7e550ed54bb5a2c1e4e904fa9ca39"
            },
            "downloads": -1,
            "filename": "liver_annotation-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8fc284105dd9efa8cda287a4fe2bfe0f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 5819,
            "upload_time": "2024-08-20T19:37:38",
            "upload_time_iso_8601": "2024-08-20T19:37:38.472835Z",
            "url": "https://files.pythonhosted.org/packages/51/31/272f10f8d8b5baac24d39940a0dea47787924553dda03f881d71dc04e720/liver_annotation-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "89a7b68debd628a9e58a10cbff32859d3fc7ccf6b9e2ad99df3d309eb3c38355",
                "md5": "62ad6336afc4e25a7afa53150f2100c0",
                "sha256": "6e92baf08c458f0d5e1581fb80dc292016a698220297efc8867c932355ecc66d"
            },
            "downloads": -1,
            "filename": "liver_annotation-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "62ad6336afc4e25a7afa53150f2100c0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 5404,
            "upload_time": "2024-08-20T19:37:39",
            "upload_time_iso_8601": "2024-08-20T19:37:39.406919Z",
            "url": "https://files.pythonhosted.org/packages/89/a7/b68debd628a9e58a10cbff32859d3fc7ccf6b9e2ad99df3d309eb3c38355/liver_annotation-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-20 19:37:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mThkTrn",
    "github_project": "liver_annotation",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "liver-annotation"
}
        
Elapsed time: 0.51600s