| Name | lossrider JSON |
| Version |
0.0.2
JSON |
| download |
| home_page | None |
| Summary | A plotting library that create Line Rider maps |
| upload_time | 2024-08-19 17:40:59 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | >=3.6 |
| license | None |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# Loss Rider
Finally, a Python plotting library that can (only) output __Line Rider__ maps!
<p align="center" width="100%">
<br>
<img src="https://github.com/user-attachments/assets/219ac1fa-57a5-4c7f-bab3-7bbb5a78a70b">
<br>
</p>
ML practitioners can experience gradient descent like never before!
<p align="center" width="100%">
<br>
<img src="https://github.com/user-attachments/assets/025fb50e-7b03-452e-8b45-a15e258012db">
<br>
</p>
With support for all important features of a line graph.
<p align="center" width="100%">
<br>
<img src="https://github.com/user-attachments/assets/da32dd51-ba91-4d3d-9bff-30c5f6c051d8">
<br>
</p>
And don't forget interactive plotting in Jupyter Notebooks!
<p align="center" width="100%">
<br>
<img src="https://github.com/user-attachments/assets/12bed788-a3a3-441c-a991-a6565b526e00">
<br>
</p>
# Installation
```bash
pip install lossrider
```
# Usage
```python
import pandas as pd
from lossrider import lossrider
# Load a csv that contains columns named "Validation Loss", "Run Count" and "model_type"
data = pd.read_csv("./_data/sweep_df.csv")
# Plot it!
lossrider(
data,
x="Run Count",
y="Validation Loss",
hue="model_type",
xlim=(0.6, 340),
ylim=(3.2, 3.8),
xticks=(1, 10, 100),
yticks=[x/10 for x in range(32, 39)],
width=1000, height=500, fontsize=30,
logx=True, grid=False,
legend=True, legend_loc=(.65, 1),
outfile='maps/sweep_strategies',
)
```
The above produces the below plot

Raw data
{
"_id": null,
"home_page": null,
"name": "lossrider",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Josef Dean <email@josefdean.co.uk>",
"download_url": "https://files.pythonhosted.org/packages/10/24/97a7532aa2542ba791777af6562b4d2d5ff6665bc0039124417c03116f68/lossrider-0.0.2.tar.gz",
"platform": null,
"description": "# Loss Rider\nFinally, a Python plotting library that can (only) output __Line Rider__ maps!\n\n<p align=\"center\" width=\"100%\">\n <br>\n <img src=\"https://github.com/user-attachments/assets/219ac1fa-57a5-4c7f-bab3-7bbb5a78a70b\">\n <br>\n</p>\n\nML practitioners can experience gradient descent like never before!\n<p align=\"center\" width=\"100%\">\n <br>\n <img src=\"https://github.com/user-attachments/assets/025fb50e-7b03-452e-8b45-a15e258012db\">\n <br>\n</p>\n\n\nWith support for all important features of a line graph.\n<p align=\"center\" width=\"100%\">\n <br>\n <img src=\"https://github.com/user-attachments/assets/da32dd51-ba91-4d3d-9bff-30c5f6c051d8\">\n <br>\n</p>\n\n\nAnd don't forget interactive plotting in Jupyter Notebooks!\n<p align=\"center\" width=\"100%\">\n <br>\n <img src=\"https://github.com/user-attachments/assets/12bed788-a3a3-441c-a991-a6565b526e00\">\n <br>\n</p>\n\n# Installation\n```bash\npip install lossrider\n```\n\n# Usage\n\n```python\nimport pandas as pd\nfrom lossrider import lossrider\n\n# Load a csv that contains columns named \"Validation Loss\", \"Run Count\" and \"model_type\"\ndata = pd.read_csv(\"./_data/sweep_df.csv\")\n\n# Plot it!\nlossrider(\n data,\n x=\"Run Count\", \n y=\"Validation Loss\",\n hue=\"model_type\",\n xlim=(0.6, 340),\n ylim=(3.2, 3.8),\n xticks=(1, 10, 100), \n yticks=[x/10 for x in range(32, 39)],\n width=1000, height=500, fontsize=30,\n logx=True, grid=False,\n legend=True, legend_loc=(.65, 1),\n outfile='maps/sweep_strategies',\n)\n```\nThe above produces the below plot\n\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "A plotting library that create Line Rider maps",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/jndean/LossRider"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b55474ea3b22553fe970250bdeda8178281757fce29089b9bb438259ec378f58",
"md5": "3add02220d3af4b8693a663b0b7a4955",
"sha256": "e8cb09a903032d117afaf126c90cc00e3e0e90cd1b435f9395e61e2e41d738db"
},
"downloads": -1,
"filename": "lossrider-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3add02220d3af4b8693a663b0b7a4955",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 7167,
"upload_time": "2024-08-19T17:40:58",
"upload_time_iso_8601": "2024-08-19T17:40:58.573159Z",
"url": "https://files.pythonhosted.org/packages/b5/54/74ea3b22553fe970250bdeda8178281757fce29089b9bb438259ec378f58/lossrider-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "102497a7532aa2542ba791777af6562b4d2d5ff6665bc0039124417c03116f68",
"md5": "877a2317fb03a78af91a9e64921e78f7",
"sha256": "a3d8a1b81a271566b2df7d9800fde80aae3e3f38b5dcdc443246df1157d5496a"
},
"downloads": -1,
"filename": "lossrider-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "877a2317fb03a78af91a9e64921e78f7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 6914,
"upload_time": "2024-08-19T17:40:59",
"upload_time_iso_8601": "2024-08-19T17:40:59.959568Z",
"url": "https://files.pythonhosted.org/packages/10/24/97a7532aa2542ba791777af6562b4d2d5ff6665bc0039124417c03116f68/lossrider-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-19 17:40:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jndean",
"github_project": "LossRider",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "lossrider"
}