mAdvisor


NamemAdvisor JSON
Version 0.3.0 PyPI version JSON
download
home_pagehttps://www.marlabs.com/platforms/cognitive-computing-AI-ML-platform/
SummaryAn automated AI/ML solution from Marlabs
upload_time2021-06-17 07:44:23
maintainerRahul Sivankutty
docs_urlNone
authorMarlabs Inc.
requires_python>=3.6
license
keywords machine learning data science automated machine learning regressor regressors regression classification classifiers classifier estimators predictors xgboost random forest sklearn scikit-learn analytics analysts feature importancesanalytics artificial intelligence ensembling feature engineering feature extraction feature selection production pandas dataframes deep learning tensorflow deeplearning lightgbm gradient boosting gbm keras production ready
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <img src="https://www.marlabs.com/wp-content/uploads/2017/09/marlabs_logo.png">
</div>

mAdvisor AutoML by Marlabs
==============
[![Python](https://img.shields.io/pypi/pyversions/madvisor.svg?style=plastic)](https://badge.fury.io/py/madvisor)

mAdvisor AutoML is an automated AI/ML solution from Marlabs that translates data into meaningful insights & predictions without any manual intervention. AutoML gives you the power of cognitive technologies like machine learning, machine reasoning, deep learning, natural language generation, natural language processing and expert rules systems with your limited knowledge of AI/ML, thereby enabling enterprises to identify revenue streams, enhance customer experience and productivity. This solution is designed for application and machine experts, so that machine learning models can be created with no help from a data scientist.  A 30-day trial license for mAdvisor AutoML® is issued on activation.

The solution includes the following features:
1. Ability to comprehend and monetize Big Data
2. Rapid time to insights
3. No dependency on data scientists & analysts to create briefs
4. Rapid development of predictive apps
5. Expandable and Scalable to the adoption of new use cases

--------------



Installation
--------------
### pip
```sh
$ pip install mAdvisor
```

Usage
--------------
  * A Licence Key is required to use this package
  * Register yourself to activate the 30 days free trial
  * Connect with Marlabs mAdvisor team to purchase a paid licence.

## User Registration and Plan Subscription

###  Sign Up
```sh
import requests
base_url = 'https://madvisor-dbc.marlabsai.com/automl'
url = base_url + '/account/sign-up'
data= {'email': '<email id>',
 'username':'<user name>',
 'password':'<password>'
}
response = requests.post(url, data=data)
if response.status_code != 200:
    print('Failed response code {}'.format(response.status_code))
print('Output result: {}'.format(response.json()))
```
###  Subscribe to the 30 days trial plan
```sh
url = base_url+'/subscription/subscribe-plan'
data= {'username':'<user name>',
 'password':'<password>',
 'subscription_type': 'TRIAL',
 'plan': 'FREE'
 }

response = requests.post(url, data=data)
if response.status_code != 200:
    print('Failed response code {}'.format(response.status_code))
print('Output result: {}'.format(response.json()))
```

###  Check Your Active Subscriptions
```sh
url = base_url+'/subscription/active-plans'
data= {'username':'<user name>',
 'password':'<password>'
 }

response = requests.post(url, data=data)
if response.status_code != 200:
    print('Failed response code {}'.format(response.status_code))
print('Output result: {}'.format(response.json()))
```

## Start Using the Library

### AutoML model training
This calss is used to initiate AutoML training job, user has to use the slug value returned from here while doing prediction.
```sh
from mAdvisor import train
model = train(train_data="<train dataset pass either path to the file or dataframe>",
               target="<Target Variable Name>",
               token = "<Licence Key>")
model_slug, _ = model.fit()
```

### AutoML prediction
Train data prediction can be using this class
```sh
from mAdvisor import score
model = score(test_data="<test dataset pass either path to the file or dataframe>",
               training_slug="<model slug value received from train output>",
               token = "<Licence Key>")
prediction_rules, predicted_data, _ = model.fit()
```
### AutoML model Training and Prediction in a single go
Used to initiate automl job, both model training and scoring can be done using this class.
```sh
from mAdvisor import automl
model = automl(train_data="<train dataset pass either path to the file or dataframe>",
               test_data="<test dataset pass either path to the file or dataframe>",
               target="<Target Variable Name>",
               token = "<Licence Key>")
model_slug, prediction_rules, predicted_data, _ = model.fit()
```

### Automated Data Preprocessing, Feature engineering and Feature Selection for train data
Feature engineering module will return two dataframes, one for linear algorithms & second one for tree based algorithms and a slug value which is to be used while preparing test data. 
```sh
from mAdvisor import AutoFE
preprocess = AutoFE(target="<Target Variable Name>",
                    train_df = "train dataframe to be used",
                    token = "<Licence Key>")
linear_df, tree_df, fe_slug, _ = preprocess.fit()
```

### Automated Data Preprocessing, Feature engineering and Feature Selection for test data
Feature engineering module will return two dataframes, one for linear algorithms and second one for tree based algorithms.
```sh
from mAdvisor import AutoFE_Test
preprocess_test = AutoFE_Test(test_df = "<test dataframe to be used>",
			 fe_slug="<Unique slug value received from train data feature engineering>",
                   	 token = "<Licence Key>")
linear_df_test, tree_df_test, _ = preprocess_test.fit()
```




            

Raw data

            {
    "_id": null,
    "home_page": "https://www.marlabs.com/platforms/cognitive-computing-AI-ML-platform/",
    "name": "mAdvisor",
    "maintainer": "Rahul Sivankutty",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "Rahul.Sivankutty@marlabs.com",
    "keywords": "machine learning,data science,automated machine learning,regressor,regressors,regression,classification,classifiers,classifier,estimators,predictors,XGBoost,Random Forest,sklearn,scikit-learn,analytics,analysts,feature importancesanalytics,artificial intelligence,ensembling,feature engineering,feature extraction,feature selection,production,pandas,dataframes,deep learning,tensorflow,deeplearning,lightgbm,gradient boosting,gbm,keras,production ready",
    "author": "Marlabs Inc.",
    "author_email": "mAdvisor_AutoML@marlabs.com",
    "download_url": "",
    "platform": "",
    "description": "<div align=\"center\">\n  <img src=\"https://www.marlabs.com/wp-content/uploads/2017/09/marlabs_logo.png\">\n</div>\n\nmAdvisor AutoML by Marlabs\n==============\n[![Python](https://img.shields.io/pypi/pyversions/madvisor.svg?style=plastic)](https://badge.fury.io/py/madvisor)\n\nmAdvisor AutoML is an automated AI/ML solution from Marlabs that translates data into meaningful insights & predictions without any manual intervention. AutoML gives you the power of cognitive technologies like machine learning, machine reasoning, deep learning, natural language generation, natural language processing and expert rules systems with your limited knowledge of AI/ML, thereby enabling enterprises to identify revenue streams, enhance customer experience and productivity. This solution is designed for application and machine experts, so that machine learning models can be created with no help from a data scientist.  A 30-day trial license for mAdvisor AutoML\u00ae is issued on activation.\n\nThe solution includes the following features:\n1. Ability to comprehend and monetize Big Data\n2. Rapid time to insights\n3. No dependency on data scientists & analysts to create briefs\n4. Rapid development of predictive apps\n5. Expandable and Scalable to the adoption of new use cases\n\n--------------\n\n\n\nInstallation\n--------------\n### pip\n```sh\n$ pip install mAdvisor\n```\n\nUsage\n--------------\n  * A Licence Key is required to use this package\n  * Register yourself to activate the 30 days free trial\n  * Connect with Marlabs mAdvisor team to purchase a paid licence.\n\n## User Registration and Plan Subscription\n\n###  Sign Up\n```sh\nimport requests\nbase_url = 'https://madvisor-dbc.marlabsai.com/automl'\nurl = base_url + '/account/sign-up'\ndata= {'email': '<email id>',\n 'username':'<user name>',\n 'password':'<password>'\n}\nresponse = requests.post(url, data=data)\nif response.status_code != 200:\n    print('Failed response code {}'.format(response.status_code))\nprint('Output result: {}'.format(response.json()))\n```\n###  Subscribe to the 30 days trial plan\n```sh\nurl = base_url+'/subscription/subscribe-plan'\ndata= {'username':'<user name>',\n 'password':'<password>',\n 'subscription_type': 'TRIAL',\n 'plan': 'FREE'\n }\n\nresponse = requests.post(url, data=data)\nif response.status_code != 200:\n    print('Failed response code {}'.format(response.status_code))\nprint('Output result: {}'.format(response.json()))\n```\n\n###  Check Your Active Subscriptions\n```sh\nurl = base_url+'/subscription/active-plans'\ndata= {'username':'<user name>',\n 'password':'<password>'\n }\n\nresponse = requests.post(url, data=data)\nif response.status_code != 200:\n    print('Failed response code {}'.format(response.status_code))\nprint('Output result: {}'.format(response.json()))\n```\n\n## Start Using the Library\n\n### AutoML model training\nThis calss is used to initiate AutoML training job, user has to use the slug value returned from here while doing prediction.\n```sh\nfrom mAdvisor import train\nmodel = train(train_data=\"<train dataset pass either path to the file or dataframe>\",\n               target=\"<Target Variable Name>\",\n               token = \"<Licence Key>\")\nmodel_slug, _ = model.fit()\n```\n\n### AutoML prediction\nTrain data prediction can be using this class\n```sh\nfrom mAdvisor import score\nmodel = score(test_data=\"<test dataset pass either path to the file or dataframe>\",\n               training_slug=\"<model slug value received from train output>\",\n               token = \"<Licence Key>\")\nprediction_rules, predicted_data, _ = model.fit()\n```\n### AutoML model Training and Prediction in a single go\nUsed to initiate automl job, both model training and scoring can be done using this class.\n```sh\nfrom mAdvisor import automl\nmodel = automl(train_data=\"<train dataset pass either path to the file or dataframe>\",\n               test_data=\"<test dataset pass either path to the file or dataframe>\",\n               target=\"<Target Variable Name>\",\n               token = \"<Licence Key>\")\nmodel_slug, prediction_rules, predicted_data, _ = model.fit()\n```\n\n### Automated Data Preprocessing, Feature engineering and Feature Selection for train data\nFeature engineering module will return two dataframes, one for linear algorithms & second one for tree based algorithms and a slug value which is to be used while preparing test data. \n```sh\nfrom mAdvisor import AutoFE\npreprocess = AutoFE(target=\"<Target Variable Name>\",\n                    train_df = \"train dataframe to be used\",\n                    token = \"<Licence Key>\")\nlinear_df, tree_df, fe_slug, _ = preprocess.fit()\n```\n\n### Automated Data Preprocessing, Feature engineering and Feature Selection for test data\nFeature engineering module will return two dataframes, one for linear algorithms and second one for tree based algorithms.\n```sh\nfrom mAdvisor import AutoFE_Test\npreprocess_test = AutoFE_Test(test_df = \"<test dataframe to be used>\",\n\t\t\t fe_slug=\"<Unique slug value received from train data feature engineering>\",\n                   \t token = \"<Licence Key>\")\nlinear_df_test, tree_df_test, _ = preprocess_test.fit()\n```\n\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "An automated AI/ML solution from Marlabs",
    "version": "0.3.0",
    "split_keywords": [
        "machine learning",
        "data science",
        "automated machine learning",
        "regressor",
        "regressors",
        "regression",
        "classification",
        "classifiers",
        "classifier",
        "estimators",
        "predictors",
        "xgboost",
        "random forest",
        "sklearn",
        "scikit-learn",
        "analytics",
        "analysts",
        "feature importancesanalytics",
        "artificial intelligence",
        "ensembling",
        "feature engineering",
        "feature extraction",
        "feature selection",
        "production",
        "pandas",
        "dataframes",
        "deep learning",
        "tensorflow",
        "deeplearning",
        "lightgbm",
        "gradient boosting",
        "gbm",
        "keras",
        "production ready"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "d6023686841df023231e5a8be2ee6607",
                "sha256": "2a67ce903f5e84eebb2f233b1ef442750537731089d2c3722a5eb203eb14fd34"
            },
            "downloads": -1,
            "filename": "mAdvisor-0.3.0-cp36-cp36m-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d6023686841df023231e5a8be2ee6607",
            "packagetype": "bdist_wheel",
            "python_version": "cp36",
            "requires_python": ">=3.6",
            "size": 35205619,
            "upload_time": "2021-06-17T07:44:23",
            "upload_time_iso_8601": "2021-06-17T07:44:23.392208Z",
            "url": "https://files.pythonhosted.org/packages/ae/ae/bf6557de4c6c0f4d6fa21e67868d8929fc89fa722a9f0b582c9613b68b80/mAdvisor-0.3.0-cp36-cp36m-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "ca6db12ae9d46f6152779e05fc8f0c69",
                "sha256": "86d6091c6be1ec964e141524a2c5a21799da779fcd5c6169852f410e4892e421"
            },
            "downloads": -1,
            "filename": "mAdvisor-0.3.0-cp36-cp36m-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "ca6db12ae9d46f6152779e05fc8f0c69",
            "packagetype": "bdist_wheel",
            "python_version": "cp36",
            "requires_python": ">=3.6",
            "size": 6739904,
            "upload_time": "2021-06-17T07:44:51",
            "upload_time_iso_8601": "2021-06-17T07:44:51.024656Z",
            "url": "https://files.pythonhosted.org/packages/7f/d9/3ba280c5355eba912d3e37fa3e88cd88512ec63535d8e0205fffabae0bd3/mAdvisor-0.3.0-cp36-cp36m-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "a41ff66792af9cb84fd7c8844455de1a",
                "sha256": "3f63070128d1c1b7bbf71354e79ca9f092aae00bcbc0f22009724f83b219a629"
            },
            "downloads": -1,
            "filename": "mAdvisor-0.3.0-cp37-cp37m-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a41ff66792af9cb84fd7c8844455de1a",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": ">=3.6",
            "size": 34890976,
            "upload_time": "2021-06-17T07:46:35",
            "upload_time_iso_8601": "2021-06-17T07:46:35.463295Z",
            "url": "https://files.pythonhosted.org/packages/35/46/e90032adc4d870c7486a43b44be8ca07234109dbf156ddc4578caa6f3b34/mAdvisor-0.3.0-cp37-cp37m-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "1b3a728154150ef51632dbca39822ac7",
                "sha256": "24b53e7c606a4cf6f4d18b3877aba081e5b631b16109ec6de069c2fa75d5b324"
            },
            "downloads": -1,
            "filename": "mAdvisor-0.3.0-cp37-cp37m-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "1b3a728154150ef51632dbca39822ac7",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": ">=3.6",
            "size": 6753789,
            "upload_time": "2021-06-17T07:47:00",
            "upload_time_iso_8601": "2021-06-17T07:47:00.853306Z",
            "url": "https://files.pythonhosted.org/packages/d1/24/9e0b0e4f3560f88a4e77455ea00c18a6a56d1951d5c45aa905f529e8d982/mAdvisor-0.3.0-cp37-cp37m-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "7cf11323b2a6b75e1b6ee377acb88a38",
                "sha256": "1c9fdb639e96eb735a9505c9960ea02330c087aa6578b990475848375597086c"
            },
            "downloads": -1,
            "filename": "mAdvisor-0.3.0-cp38-cp38-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7cf11323b2a6b75e1b6ee377acb88a38",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.6",
            "size": 92866196,
            "upload_time": "2021-06-17T07:50:46",
            "upload_time_iso_8601": "2021-06-17T07:50:46.695192Z",
            "url": "https://files.pythonhosted.org/packages/f1/a2/6b253ffccbca8f0f9bb2e14da85fe530dee28c5d09c4cb08a1bb73994b61/mAdvisor-0.3.0-cp38-cp38-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "2cedd06f07f6d4a5cb831979c439a37e",
                "sha256": "823c772889f82d0774dc2ed6e49ea011261db25f474eddb778c9cf95a353e85c"
            },
            "downloads": -1,
            "filename": "mAdvisor-0.3.0-cp38-cp38-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "2cedd06f07f6d4a5cb831979c439a37e",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.6",
            "size": 7383243,
            "upload_time": "2021-06-17T07:51:05",
            "upload_time_iso_8601": "2021-06-17T07:51:05.222095Z",
            "url": "https://files.pythonhosted.org/packages/76/54/72b28b12c87287e3fcb280c8fce9ca7f38614aacac33dda1cb4d59c5cd6c/mAdvisor-0.3.0-cp38-cp38-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2021-06-17 07:44:23",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "madvisor"
}
        
Elapsed time: 0.32750s