<h1 align="center">
<a href="https://anbai106.github.io/MAGIC/">
<img src="https://anbai106.github.io/MAGIC/images/magic.png" alt="magic logo" width="150" height="150">
</a>
<br/>
MAGIC
</h1>
<p align="center"><strong>Multi-scAle heteroGeneity analysIs and Clustering</strong></p>
<p align="center">
<a href="https://anbai106.github.io/MAGIC/">Documentation</a>
</p>
## `MLNI`
**MAGIC**, Multi-scAle heteroGeneity analysIs and Clustering, is a multi-scale semi-supervised clustering method that aims to derive robust clustering solutions across different scales for brain diseases.
> :warning: **The documentation of this software is currently under development**
## Citing this work
### If you use this software for clustering:
> Wen J., Varol E., Chand G., Sotiras A., Davatzikos C. (2020) **MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain Diseases**. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_66
> Wen J., Varol E., Chand G., Sotiras A., Davatzikos C. (2022) **Multi-scale semi-supervised clustering of brain images: Deriving disease subtypes**. Medical Image Analysis, 2022. https://doi.org/10.1016/j.media.2021.102304 - [Link](https://www.sciencedirect.com/science/article/pii/S1361841521003492)
Raw data
{
"_id": null,
"home_page": "https://github.com/anbai106/MAGIC",
"name": "magiccluster",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "junhao.wen",
"author_email": "junhao.wen89@email.com",
"download_url": "https://files.pythonhosted.org/packages/fb/08/4b228d702e20094bc97cc712952d31a89a95536fc7d029b122b3d3f74b0c/magiccluster-0.0.3.tar.gz",
"platform": null,
"description": "<h1 align=\"center\">\n <a href=\"https://anbai106.github.io/MAGIC/\">\n <img src=\"https://anbai106.github.io/MAGIC/images/magic.png\" alt=\"magic logo\" width=\"150\" height=\"150\">\n </a>\n <br/>\n MAGIC\n</h1>\n\n<p align=\"center\"><strong>Multi-scAle heteroGeneity analysIs and Clustering</strong></p>\n\n<p align=\"center\">\n <a href=\"https://anbai106.github.io/MAGIC/\">Documentation</a>\n</p>\n\n## `MLNI`\n**MAGIC**, Multi-scAle heteroGeneity analysIs and Clustering, is a multi-scale semi-supervised clustering method that aims to derive robust clustering solutions across different scales for brain diseases.\n\n> :warning: **The documentation of this software is currently under development**\n\n## Citing this work\n### If you use this software for clustering:\n> Wen J., Varol E., Chand G., Sotiras A., Davatzikos C. (2020) **MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain Diseases**. Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_66\n\n> Wen J., Varol E., Chand G., Sotiras A., Davatzikos C. (2022) **Multi-scale semi-supervised clustering of brain images: Deriving disease subtypes**. Medical Image Analysis, 2022. https://doi.org/10.1016/j.media.2021.102304 - [Link](https://www.sciencedirect.com/science/article/pii/S1361841521003492)\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Multi-scale semi-supervised clustering",
"version": "0.0.3",
"project_urls": {
"Homepage": "https://github.com/anbai106/MAGIC"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f0e8b767deec8dbbe0a4fe1586ba5042e2310646acaf64b2fa873bb21e008cfa",
"md5": "0107fd429c6fd3bb7f3b7ae5671febdb",
"sha256": "2997cd151d21af1452b467302fb5c6402134e6ad23de0148f19a864f3ecb892d"
},
"downloads": -1,
"filename": "magiccluster-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0107fd429c6fd3bb7f3b7ae5671febdb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 20283,
"upload_time": "2023-09-24T15:01:26",
"upload_time_iso_8601": "2023-09-24T15:01:26.706797Z",
"url": "https://files.pythonhosted.org/packages/f0/e8/b767deec8dbbe0a4fe1586ba5042e2310646acaf64b2fa873bb21e008cfa/magiccluster-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fb084b228d702e20094bc97cc712952d31a89a95536fc7d029b122b3d3f74b0c",
"md5": "128fc77d9872e26800de73219deb7352",
"sha256": "0b441a84dc766a40c05ead9d3fa8282ad65e2252ba7000dd37c2c1b702ee5a70"
},
"downloads": -1,
"filename": "magiccluster-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "128fc77d9872e26800de73219deb7352",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 16518,
"upload_time": "2023-09-24T15:01:27",
"upload_time_iso_8601": "2023-09-24T15:01:27.854577Z",
"url": "https://files.pythonhosted.org/packages/fb/08/4b228d702e20094bc97cc712952d31a89a95536fc7d029b122b3d3f74b0c/magiccluster-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-24 15:01:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "anbai106",
"github_project": "MAGIC",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "magiccluster"
}