metcalcpy


Namemetcalcpy JSON
Version 2.1 PyPI version JSON
download
home_pagehttps://github.com/dtcenter/METcalcpy
Summarystatistics and util package for METplus
upload_time2023-08-01 23:44:59
maintainer
docs_urlNone
authorMETplus
requires_python>=3.10
license
keywords
VCS
bugtrack_url
requirements imageio imutils metpy netCDF4 numpy opencv-python pandas pint pytest PyYAML scikit-image scipy xarray scikit-learn eofs
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # METcalcpy
Provides libraries for the following: calculation of statistics, pre-processing input, and performing diagnostics for METviewer, 
METexpress, and the plotting scripts in METplotpy.

Please see the [METcalcpy User's Guide](https://metcalcpy.readthedocs.io/en/latest) for more information.

Support for the METplus components is provided through the
[METplus Discussions](https://github.com/dtcenter/METplus/discussions) forum.
Users are welcome and encouraged to answer or address each other's questions there!  For more
information, please read
"[Welcome to the METplus Components Discussions](https://github.com/dtcenter/METplus/discussions/939)".

For information about the support provided for releases, see our [Release Support Policy](https://metplus.readthedocs.io/en/develop/Release_Guide/index.html#release-support-policy).

Instructions for installing the metcalcpy package locally
---------------------------------------------------------
- activate your conda environment (i.e. 'conda activate your-conda-env-name')
- from within your active conda environment, cd to the METcalcpy/ directory, where you will see the setup.py script
- from this directory, run the following on the command line: pip install -e .
- the -e option stands for editable, which is useful in that you can update your METcalcpy/metcalcpy source without reinstalling it 
- the . indicates that you should search the current directory for the setup.py script

- use metcalcpy package via import statement:
  - Examples:
   
    - import metcalcpy.util.ctc_statistics as cstats
        - to use the functions in the ctc_statistics module
  
Instructions for installing the metcalcpy package from PyPI
-----------------------------------------------------------

- activate your Python 3.10+ conda environment
- run the following from the command line:
   -  pip install metcalcpy==x.y.z  where x.y.z is the version number of interest

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dtcenter/METcalcpy",
    "name": "metcalcpy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "",
    "keywords": "",
    "author": "METplus",
    "author_email": "met-help@ucar.edu",
    "download_url": "https://files.pythonhosted.org/packages/84/7c/995ba8bac2c0985deddeb6701ba563de7a525efecad67056adf23c1607ce/metcalcpy-2.1.tar.gz",
    "platform": null,
    "description": "# METcalcpy\nProvides libraries for the following: calculation of statistics, pre-processing input, and performing diagnostics for METviewer, \nMETexpress, and the plotting scripts in METplotpy.\n\nPlease see the [METcalcpy User's Guide](https://metcalcpy.readthedocs.io/en/latest) for more information.\n\nSupport for the METplus components is provided through the\n[METplus Discussions](https://github.com/dtcenter/METplus/discussions) forum.\nUsers are welcome and encouraged to answer or address each other's questions there!  For more\ninformation, please read\n\"[Welcome to the METplus Components Discussions](https://github.com/dtcenter/METplus/discussions/939)\".\n\nFor information about the support provided for releases, see our [Release Support Policy](https://metplus.readthedocs.io/en/develop/Release_Guide/index.html#release-support-policy).\n\nInstructions for installing the metcalcpy package locally\n---------------------------------------------------------\n- activate your conda environment (i.e. 'conda activate your-conda-env-name')\n- from within your active conda environment, cd to the METcalcpy/ directory, where you will see the setup.py script\n- from this directory, run the following on the command line: pip install -e .\n- the -e option stands for editable, which is useful in that you can update your METcalcpy/metcalcpy source without reinstalling it \n- the . indicates that you should search the current directory for the setup.py script\n\n- use metcalcpy package via import statement:\n  - Examples:\n   \n    - import metcalcpy.util.ctc_statistics as cstats\n        - to use the functions in the ctc_statistics module\n  \nInstructions for installing the metcalcpy package from PyPI\n-----------------------------------------------------------\n\n- activate your Python 3.10+ conda environment\n- run the following from the command line:\n   -  pip install metcalcpy==x.y.z  where x.y.z is the version number of interest\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "statistics and util package for METplus",
    "version": "2.1",
    "project_urls": {
        "Homepage": "https://github.com/dtcenter/METcalcpy"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd0bdd5bfdf6187978cc7f40582bad99a13db3586a18d84310307c366f3ea19b",
                "md5": "3b67bb3fac4c4da911f033923876ede1",
                "sha256": "43745645a71925450c8d077611dbb2b828a4a59f8fba7e0cd27d3ccaa12eb5a5"
            },
            "downloads": -1,
            "filename": "metcalcpy-2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b67bb3fac4c4da911f033923876ede1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 204544,
            "upload_time": "2023-08-01T23:44:57",
            "upload_time_iso_8601": "2023-08-01T23:44:57.829519Z",
            "url": "https://files.pythonhosted.org/packages/fd/0b/dd5bfdf6187978cc7f40582bad99a13db3586a18d84310307c366f3ea19b/metcalcpy-2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "847c995ba8bac2c0985deddeb6701ba563de7a525efecad67056adf23c1607ce",
                "md5": "15cb718e92c050890d2529642a3b3cfd",
                "sha256": "503b6ba4fb422e14d906ae5e5c5496997343b96cbfd65276ff85c621008a8cd3"
            },
            "downloads": -1,
            "filename": "metcalcpy-2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "15cb718e92c050890d2529642a3b3cfd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 157225,
            "upload_time": "2023-08-01T23:44:59",
            "upload_time_iso_8601": "2023-08-01T23:44:59.360448Z",
            "url": "https://files.pythonhosted.org/packages/84/7c/995ba8bac2c0985deddeb6701ba563de7a525efecad67056adf23c1607ce/metcalcpy-2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-01 23:44:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dtcenter",
    "github_project": "METcalcpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "imageio",
            "specs": [
                [
                    "==",
                    "2.25.0"
                ]
            ]
        },
        {
            "name": "imutils",
            "specs": [
                [
                    "==",
                    "0.5.4"
                ]
            ]
        },
        {
            "name": "metpy",
            "specs": [
                [
                    "==",
                    "1.4.0"
                ]
            ]
        },
        {
            "name": "netCDF4",
            "specs": [
                [
                    "==",
                    "1.6.2"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.24.2"
                ]
            ]
        },
        {
            "name": "opencv-python",
            "specs": [
                [
                    ">=",
                    "4.7.0.72"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "1.5.2"
                ]
            ]
        },
        {
            "name": "pint",
            "specs": [
                [
                    "==",
                    "0.20.1"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    "==",
                    "7.2.1"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    "==",
                    "6.0"
                ]
            ]
        },
        {
            "name": "scikit-image",
            "specs": [
                [
                    "==",
                    "0.19.3"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.11.1"
                ]
            ]
        },
        {
            "name": "xarray",
            "specs": [
                [
                    "==",
                    "2023.1.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.2.1"
                ]
            ]
        },
        {
            "name": "eofs",
            "specs": [
                [
                    ">=",
                    "1.4.0"
                ]
            ]
        }
    ],
    "lcname": "metcalcpy"
}
        
Elapsed time: 0.10362s