# METcalcpy
Provides libraries for the following: calculation of statistics, pre-processing input, and performing diagnostics for METviewer,
METexpress, and the plotting scripts in METplotpy.
Please see the [METcalcpy User's Guide](https://metcalcpy.readthedocs.io/en/latest) for more information.
Support for the METplus components is provided through the
[METplus Discussions](https://github.com/dtcenter/METplus/discussions) forum.
Users are welcome and encouraged to answer or address each other's questions there! For more
information, please read
"[Welcome to the METplus Components Discussions](https://github.com/dtcenter/METplus/discussions/939)".
For information about the support provided for releases, see our [Release Support Policy](https://metplus.readthedocs.io/en/develop/Release_Guide/index.html#release-support-policy).
Instructions for installing the metcalcpy package locally
---------------------------------------------------------
- activate your conda environment (i.e. 'conda activate your-conda-env-name')
- from within your active conda environment, cd to the METcalcpy/ directory, where you will see the setup.py script
- from this directory, run the following on the command line: pip install -e .
- the -e option stands for editable, which is useful in that you can update your METcalcpy/metcalcpy source without reinstalling it
- the . indicates that you should search the current directory for the setup.py script
- use metcalcpy package via import statement:
- Examples:
- import metcalcpy.util.ctc_statistics as cstats
- to use the functions in the ctc_statistics module
Instructions for installing the metcalcpy package from PyPI
-----------------------------------------------------------
- activate your Python 3.10+ conda environment
- run the following from the command line:
- pip install metcalcpy==x.y.z where x.y.z is the version number of interest
Raw data
{
"_id": null,
"home_page": "https://github.com/dtcenter/METcalcpy",
"name": "metcalcpy",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "",
"keywords": "",
"author": "METplus",
"author_email": "met-help@ucar.edu",
"download_url": "https://files.pythonhosted.org/packages/84/7c/995ba8bac2c0985deddeb6701ba563de7a525efecad67056adf23c1607ce/metcalcpy-2.1.tar.gz",
"platform": null,
"description": "# METcalcpy\nProvides libraries for the following: calculation of statistics, pre-processing input, and performing diagnostics for METviewer, \nMETexpress, and the plotting scripts in METplotpy.\n\nPlease see the [METcalcpy User's Guide](https://metcalcpy.readthedocs.io/en/latest) for more information.\n\nSupport for the METplus components is provided through the\n[METplus Discussions](https://github.com/dtcenter/METplus/discussions) forum.\nUsers are welcome and encouraged to answer or address each other's questions there! For more\ninformation, please read\n\"[Welcome to the METplus Components Discussions](https://github.com/dtcenter/METplus/discussions/939)\".\n\nFor information about the support provided for releases, see our [Release Support Policy](https://metplus.readthedocs.io/en/develop/Release_Guide/index.html#release-support-policy).\n\nInstructions for installing the metcalcpy package locally\n---------------------------------------------------------\n- activate your conda environment (i.e. 'conda activate your-conda-env-name')\n- from within your active conda environment, cd to the METcalcpy/ directory, where you will see the setup.py script\n- from this directory, run the following on the command line: pip install -e .\n- the -e option stands for editable, which is useful in that you can update your METcalcpy/metcalcpy source without reinstalling it \n- the . indicates that you should search the current directory for the setup.py script\n\n- use metcalcpy package via import statement:\n - Examples:\n \n - import metcalcpy.util.ctc_statistics as cstats\n - to use the functions in the ctc_statistics module\n \nInstructions for installing the metcalcpy package from PyPI\n-----------------------------------------------------------\n\n- activate your Python 3.10+ conda environment\n- run the following from the command line:\n - pip install metcalcpy==x.y.z where x.y.z is the version number of interest\n",
"bugtrack_url": null,
"license": "",
"summary": "statistics and util package for METplus",
"version": "2.1",
"project_urls": {
"Homepage": "https://github.com/dtcenter/METcalcpy"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fd0bdd5bfdf6187978cc7f40582bad99a13db3586a18d84310307c366f3ea19b",
"md5": "3b67bb3fac4c4da911f033923876ede1",
"sha256": "43745645a71925450c8d077611dbb2b828a4a59f8fba7e0cd27d3ccaa12eb5a5"
},
"downloads": -1,
"filename": "metcalcpy-2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3b67bb3fac4c4da911f033923876ede1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 204544,
"upload_time": "2023-08-01T23:44:57",
"upload_time_iso_8601": "2023-08-01T23:44:57.829519Z",
"url": "https://files.pythonhosted.org/packages/fd/0b/dd5bfdf6187978cc7f40582bad99a13db3586a18d84310307c366f3ea19b/metcalcpy-2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "847c995ba8bac2c0985deddeb6701ba563de7a525efecad67056adf23c1607ce",
"md5": "15cb718e92c050890d2529642a3b3cfd",
"sha256": "503b6ba4fb422e14d906ae5e5c5496997343b96cbfd65276ff85c621008a8cd3"
},
"downloads": -1,
"filename": "metcalcpy-2.1.tar.gz",
"has_sig": false,
"md5_digest": "15cb718e92c050890d2529642a3b3cfd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 157225,
"upload_time": "2023-08-01T23:44:59",
"upload_time_iso_8601": "2023-08-01T23:44:59.360448Z",
"url": "https://files.pythonhosted.org/packages/84/7c/995ba8bac2c0985deddeb6701ba563de7a525efecad67056adf23c1607ce/metcalcpy-2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-08-01 23:44:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dtcenter",
"github_project": "METcalcpy",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "imageio",
"specs": [
[
"==",
"2.25.0"
]
]
},
{
"name": "imutils",
"specs": [
[
"==",
"0.5.4"
]
]
},
{
"name": "metpy",
"specs": [
[
"==",
"1.4.0"
]
]
},
{
"name": "netCDF4",
"specs": [
[
"==",
"1.6.2"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"1.24.2"
]
]
},
{
"name": "opencv-python",
"specs": [
[
">=",
"4.7.0.72"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"1.5.2"
]
]
},
{
"name": "pint",
"specs": [
[
"==",
"0.20.1"
]
]
},
{
"name": "pytest",
"specs": [
[
"==",
"7.2.1"
]
]
},
{
"name": "PyYAML",
"specs": [
[
"==",
"6.0"
]
]
},
{
"name": "scikit-image",
"specs": [
[
"==",
"0.19.3"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.11.1"
]
]
},
{
"name": "xarray",
"specs": [
[
"==",
"2023.1.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"1.2.1"
]
]
},
{
"name": "eofs",
"specs": [
[
">=",
"1.4.0"
]
]
}
],
"lcname": "metcalcpy"
}