midi-psychopy


Namemidi-psychopy JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/xywang01/midi-psychopy
SummaryA Python interface for asynchronous MIDI data collection using PsychoPy
upload_time2024-03-25 19:44:34
maintainerNone
docs_urlNone
authorX. Michael Wang, Centre for Motor Control, University of Toronto, Faculty of Kinesiology and Physical Education
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # midi-psychopy - A Python interface for asynchronous MIDI data collection

The MIDI Interface is a Python package designed to interact with MIDI devices through the 
[Mido](https://github.com/mido/mido) library. It provides functionality to receive and 
transmit MIDI data asynchronously, which is useful for real-time data collection in
PsychoPy experiments.

## Installation

You can install the MIDI Interface package using pip:

```bash
pip install midi-psychopy
```

## Usage

### Basic Usage - Collecting MIDI Data

```python
import time
import pandas as pd
from midi_controller import MidiController

# Create an instance of MidiController
controller = MidiController(device_name='UM-ONE')

# Start data collection
controller.start_data_collection()

# Let the program run for some time (e.g., 10 seconds)
time.sleep(10)

# Stop data collection
controller.stop_data_collection()

# Access the collected MIDI data
print(controller.sequence_out_full)
```

### In PsychoPy

The setup for using the MidiController in a PsychoPy experiment is similar to the basic usage. Users can follow the 
steps below to integrate the MidiController into their experiment:

1. Create a code component in the PsychoPy Builder interface inside the routine where you want to collect MIDI data.
2. Import and instantiate the MidiController object in the "Begin Experiment" tab.

```python
import os
import pandas as pd
from midi_controller import MidiController

# Create an instance of MidiController
# Note that globalClock is a standard PsychoPy variable that can be used to synchronize the MIDI data with the
# PsychoPy global timer.
midi_controller = MidiController(device_name='UM-ONE', psychopy_global_timer=globalClock)

# Initialize a DataFrame to store the collected MIDI data
keypress_data = pd.DataFrame()

# Also initialize a variable to keep track of the trial number
trial_count = 0

# Define the path to save the data
# expInfo is standard PsychoPy variable. make sure to check the name of the identifying variable in your experiment 
# (i.e., participant is the default name for the participant ID defined in the "Experiment Info" section of the "Basic" 
# tab in the PsychoPy GUI's "Properties" window).
par_id = expInfo['participant']  
save_dir = os.path.abspath(f'./')
file_name = f'par_{par_id}.csv'
save_path = f'{save_dir}/{file_name}'
```

3. Start data collection in the "Begin Routine" tab.

```python
# Start data collection
midi_controller.start_data_collection()
```

4. Stop data collection in the "End Routine" tab.

```python
# Stop data collection
midi_controller.stop_data_collection()
```

Alternatively, a conditional statement can also be used in the "Each Frame" tab to terminate data collection based 
on certain conditions.

```python
if some_condition:
    midi_controller.stop_data_collection()
```

5. Store the collected MIDI data in the "End Experiment" tab.

Because the start_data_collection() method would reset the collected data (sequence_out_full) each time it is called,
the data should be stored locally as a csv file or in a Pandas DataFrame.

```python
temp_out = midi_controller.sequence_out_full
# Add a column to store the trial number. If there are other variables to store, add them here.
temp_out['trial'] = trial_count

trial_count += 1

# Append the collected data to the keypress_data DataFrame
keypress_data = pd.concat([keypress_data, temp_out], ignore_index=True)

# Save the data to a csv file in case the experiment crashes
keypress_data.to_csv(save_path)
```
## Requirements

- Python 3.x
- Mido
- Pandas

## Contributing
Contributions are welcome! If you find any issues or have suggestions for improvement, please open an issue or submit a 
pull request on GitHub.

## License
This project is licensed under the MIT License - see the LICENSE file for details.

## MIDI Interface
For more details about the underlying MIDI interface used by the MidiController, refer to midi_interface.py.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/xywang01/midi-psychopy",
    "name": "midi-psychopy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "X. Michael Wang, Centre for Motor Control, University of Toronto, Faculty of Kinesiology and Physical Education",
    "author_email": "michaelwxy.wang@utoronto.ca",
    "download_url": "https://files.pythonhosted.org/packages/90/4b/8833352f44b24be88c8af2eb41da6602cffe79058edd2ff70be7aea3bb07/midi-psychopy-0.0.1.tar.gz",
    "platform": null,
    "description": "# midi-psychopy - A Python interface for asynchronous MIDI data collection\n\nThe MIDI Interface is a Python package designed to interact with MIDI devices through the \n[Mido](https://github.com/mido/mido) library. It provides functionality to receive and \ntransmit MIDI data asynchronously, which is useful for real-time data collection in\nPsychoPy experiments.\n\n## Installation\n\nYou can install the MIDI Interface package using pip:\n\n```bash\npip install midi-psychopy\n```\n\n## Usage\n\n### Basic Usage - Collecting MIDI Data\n\n```python\nimport time\nimport pandas as pd\nfrom midi_controller import MidiController\n\n# Create an instance of MidiController\ncontroller = MidiController(device_name='UM-ONE')\n\n# Start data collection\ncontroller.start_data_collection()\n\n# Let the program run for some time (e.g., 10 seconds)\ntime.sleep(10)\n\n# Stop data collection\ncontroller.stop_data_collection()\n\n# Access the collected MIDI data\nprint(controller.sequence_out_full)\n```\n\n### In PsychoPy\n\nThe setup for using the MidiController in a PsychoPy experiment is similar to the basic usage. Users can follow the \nsteps below to integrate the MidiController into their experiment:\n\n1. Create a code component in the PsychoPy Builder interface inside the routine where you want to collect MIDI data.\n2. Import and instantiate the MidiController object in the \"Begin Experiment\" tab.\n\n```python\nimport os\nimport pandas as pd\nfrom midi_controller import MidiController\n\n# Create an instance of MidiController\n# Note that globalClock is a standard PsychoPy variable that can be used to synchronize the MIDI data with the\n# PsychoPy global timer.\nmidi_controller = MidiController(device_name='UM-ONE', psychopy_global_timer=globalClock)\n\n# Initialize a DataFrame to store the collected MIDI data\nkeypress_data = pd.DataFrame()\n\n# Also initialize a variable to keep track of the trial number\ntrial_count = 0\n\n# Define the path to save the data\n# expInfo is standard PsychoPy variable. make sure to check the name of the identifying variable in your experiment \n# (i.e., participant is the default name for the participant ID defined in the \"Experiment Info\" section of the \"Basic\" \n# tab in the PsychoPy GUI's \"Properties\" window).\npar_id = expInfo['participant']  \nsave_dir = os.path.abspath(f'./')\nfile_name = f'par_{par_id}.csv'\nsave_path = f'{save_dir}/{file_name}'\n```\n\n3. Start data collection in the \"Begin Routine\" tab.\n\n```python\n# Start data collection\nmidi_controller.start_data_collection()\n```\n\n4. Stop data collection in the \"End Routine\" tab.\n\n```python\n# Stop data collection\nmidi_controller.stop_data_collection()\n```\n\nAlternatively, a conditional statement can also be used in the \"Each Frame\" tab to terminate data collection based \non certain conditions.\n\n```python\nif some_condition:\n    midi_controller.stop_data_collection()\n```\n\n5. Store the collected MIDI data in the \"End Experiment\" tab.\n\nBecause the start_data_collection() method would reset the collected data (sequence_out_full) each time it is called,\nthe data should be stored locally as a csv file or in a Pandas DataFrame.\n\n```python\ntemp_out = midi_controller.sequence_out_full\n# Add a column to store the trial number. If there are other variables to store, add them here.\ntemp_out['trial'] = trial_count\n\ntrial_count += 1\n\n# Append the collected data to the keypress_data DataFrame\nkeypress_data = pd.concat([keypress_data, temp_out], ignore_index=True)\n\n# Save the data to a csv file in case the experiment crashes\nkeypress_data.to_csv(save_path)\n```\n## Requirements\n\n- Python 3.x\n- Mido\n- Pandas\n\n## Contributing\nContributions are welcome! If you find any issues or have suggestions for improvement, please open an issue or submit a \npull request on GitHub.\n\n## License\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## MIDI Interface\nFor more details about the underlying MIDI interface used by the MidiController, refer to midi_interface.py.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python interface for asynchronous MIDI data collection using PsychoPy",
    "version": "0.0.1",
    "project_urls": {
        "Download": "https://github.com/xywang01/midi-psychopy/archive/refs/tags/0.0.1.tar.gz",
        "Homepage": "https://github.com/xywang01/midi-psychopy"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "489ade8371ee495c528e3fa8db23d0f28072035f1d9b21132d25d05bfeac4adf",
                "md5": "17676b646a3ff66a4a895102e5b21760",
                "sha256": "5564a02480b3f8de837118cb0ec36bd0debfa5e7d46163d94eda760d7e1c8a15"
            },
            "downloads": -1,
            "filename": "midi_psychopy-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "17676b646a3ff66a4a895102e5b21760",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6694,
            "upload_time": "2024-03-25T19:44:33",
            "upload_time_iso_8601": "2024-03-25T19:44:33.089275Z",
            "url": "https://files.pythonhosted.org/packages/48/9a/de8371ee495c528e3fa8db23d0f28072035f1d9b21132d25d05bfeac4adf/midi_psychopy-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "904b8833352f44b24be88c8af2eb41da6602cffe79058edd2ff70be7aea3bb07",
                "md5": "71901f3c43ceef73511ddecd7c4b52f8",
                "sha256": "6e5196024ff6251858b85aa8b07a5e776e4c60e70fb28b3b5cddca5967c77afd"
            },
            "downloads": -1,
            "filename": "midi-psychopy-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "71901f3c43ceef73511ddecd7c4b52f8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5711,
            "upload_time": "2024-03-25T19:44:34",
            "upload_time_iso_8601": "2024-03-25T19:44:34.219302Z",
            "url": "https://files.pythonhosted.org/packages/90/4b/8833352f44b24be88c8af2eb41da6602cffe79058edd2ff70be7aea3bb07/midi-psychopy-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-25 19:44:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "xywang01",
    "github_project": "midi-psychopy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "midi-psychopy"
}
        
Elapsed time: 0.20328s