mlni


Namemlni JSON
Version 0.1.4 PyPI version JSON
download
home_pagehttps://github.com/anbai106/mlni
SummaryMachine Learning in NeuroImaging for various tasks, e.g., regression, classification and clustering.
upload_time2023-09-24 15:00:46
maintainer
docs_urlNone
authorjunhao.wen
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">
  <a href="https://anbai106.github.io/mlni/">
    <img src="https://anbai106.github.io/mlni/images/mlni.png" alt="mlni Logo">
  </a>
  <br/>
  MLNI
</h1>

<p align="center"><strong>Machine Learning in NeuroImaging</strong></p>

<p align="center">
  <a href="https://anbai106.github.io/mlni/">Documentation</a>
</p>

## `MLNI`
MLNI is a python package that performs various tasks using neuroimaging data: i) binary classification for disease diagnosis, following good practice proposed in [AD-ML](https://github.com/aramis-lab/AD-ML); ii) regression prediction, such as age prediction; and iii) semi-supervised clustering with [HYDRA](https://github.com/evarol/HYDRA).

> :warning: **The documentation of this software is currently under development**

## Citing this work
### If you use this software for clustering:
> Varol, E., Sotiras, A., Davatzikos, C., 2017. **HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework**. Neuroimage, 145, pp.346-364. [doi:10.1016/j.neuroimage.2016.02.041](https://www.sciencedirect.com/science/article/abs/pii/S1053811916001506?via%3Dihub) - [Paper in PDF](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358/pdf/nihms762663.pdf)

### If you use this software for classification or regression:
> Wen, J., Samper-González, J., Bottani, S., Routier, A., Burgos, N., Jacquemont, T., Fontanella, S., Durrleman, S., Epelbaum, S., Bertrand, A. and Colliot, O., 2020. **Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimer’s disease**. Neuroinformatics, pp.1-22. [doi:10.1007/s12021-020-09469-5](https://link.springer.com/article/10.1007/s12021-020-09469-5) - [Paper in PDF](https://arxiv.org/abs/1812.11183)

> J. Samper-Gonzalez, N. Burgos, S. Bottani, S. Fontanella, P. Lu, A. Marcoux, A. Routier, J. Guillon, M. Bacci, J. Wen, A. Bertrand, H. Bertin, M.-O. Habert, S. Durrleman, T. Evgeniou and O. Colliot, **Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data**. NeuroImage, 183:504–521, 2018 [doi:10.1016/j.neuroimage.2018.08.042](https://doi.org/10.1016/j.neuroimage.2018.08.042) - [Paper in PDF](https://hal.inria.fr/hal-01858384/document) - [Supplementary material](https://hal.inria.fr/hal-01858384/file/supplementary_data.xlsx)

## Publication using MLNI
> Wen, J., Varol, E., Davatzikos, C., 2020. **Multi-scale feature reduction and semi-supervised learning for parsing neuroanatomical heterogeneity**. Organization for Human Brain Mapping. - [Link](https://www.researchgate.net/publication/346965816_Multi-scale_feature_reduction_and_semi-supervised_learning_for_parsing_neuroanatomical_heterogeneity)

> Wen, J., Varol, E., Davatzikos, C., 2021. **Multi-scale semi-supervised clustering of brain images: deriving disease subtypes**. MedIA. - [Link](https://www.sciencedirect.com/science/article/abs/pii/S1361841521003492)

> Wen, J., Fu, C.H., Tosun, Davatzikos, C. 2022. **Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression**. JAMA Psychiatry -  [Link](https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2789902)

> Lalousis, P.A., Schmaal, L., Wood, S.J., Reniers, R.L., Barnes, N.M., Chisholm, K., Griffiths, S.L., Stainton, A., Wen, J., Hwang, G. and Davatzikos, C., 2022. **Neurobiologically Based Stratification of Recent Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes**. Biological Psychiatry. -  [Link](https://www.sciencedirect.com/science/article/pii/S0006322322011568#bib50)



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/anbai106/mlni",
    "name": "mlni",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "junhao.wen",
    "author_email": "junhao.wen89@email.com",
    "download_url": "https://files.pythonhosted.org/packages/e2/cd/0317c4c6778d68d58adfcd5c968fa4f055855ebdfc8764effa522510bc01/mlni-0.1.4.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">\n  <a href=\"https://anbai106.github.io/mlni/\">\n    <img src=\"https://anbai106.github.io/mlni/images/mlni.png\" alt=\"mlni Logo\">\n  </a>\n  <br/>\n  MLNI\n</h1>\n\n<p align=\"center\"><strong>Machine Learning in NeuroImaging</strong></p>\n\n<p align=\"center\">\n  <a href=\"https://anbai106.github.io/mlni/\">Documentation</a>\n</p>\n\n## `MLNI`\nMLNI is a python package that performs various tasks using neuroimaging data: i) binary classification for disease diagnosis, following good practice proposed in [AD-ML](https://github.com/aramis-lab/AD-ML); ii) regression prediction, such as age prediction; and iii) semi-supervised clustering with [HYDRA](https://github.com/evarol/HYDRA).\n\n> :warning: **The documentation of this software is currently under development**\n\n## Citing this work\n### If you use this software for clustering:\n> Varol, E., Sotiras, A., Davatzikos, C., 2017. **HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework**. Neuroimage, 145, pp.346-364. [doi:10.1016/j.neuroimage.2016.02.041](https://www.sciencedirect.com/science/article/abs/pii/S1053811916001506?via%3Dihub) - [Paper in PDF](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358/pdf/nihms762663.pdf)\n\n### If you use this software for classification or regression:\n> Wen, J., Samper-Gonz\u00e1lez, J., Bottani, S., Routier, A., Burgos, N., Jacquemont, T., Fontanella, S., Durrleman, S., Epelbaum, S., Bertrand, A. and Colliot, O., 2020. **Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimer\u2019s disease**. Neuroinformatics, pp.1-22. [doi:10.1007/s12021-020-09469-5](https://link.springer.com/article/10.1007/s12021-020-09469-5) - [Paper in PDF](https://arxiv.org/abs/1812.11183)\n\n> J. Samper-Gonzalez, N. Burgos, S. Bottani, S. Fontanella, P. Lu, A. Marcoux, A. Routier, J. Guillon, M. Bacci, J. Wen, A. Bertrand, H. Bertin, M.-O. Habert, S. Durrleman, T. Evgeniou and O. Colliot, **Reproducible evaluation of classification methods in Alzheimer\u2019s disease: Framework and application to MRI and PET data**. NeuroImage, 183:504\u2013521, 2018 [doi:10.1016/j.neuroimage.2018.08.042](https://doi.org/10.1016/j.neuroimage.2018.08.042) - [Paper in PDF](https://hal.inria.fr/hal-01858384/document) - [Supplementary material](https://hal.inria.fr/hal-01858384/file/supplementary_data.xlsx)\n\n## Publication using MLNI\n> Wen, J., Varol, E., Davatzikos, C., 2020. **Multi-scale feature reduction and semi-supervised learning for parsing neuroanatomical heterogeneity**. Organization for Human Brain Mapping. - [Link](https://www.researchgate.net/publication/346965816_Multi-scale_feature_reduction_and_semi-supervised_learning_for_parsing_neuroanatomical_heterogeneity)\n\n> Wen, J., Varol, E., Davatzikos, C., 2021. **Multi-scale semi-supervised clustering of brain images: deriving disease subtypes**. MedIA. - [Link](https://www.sciencedirect.com/science/article/abs/pii/S1361841521003492)\n\n> Wen, J., Fu, C.H., Tosun, Davatzikos, C. 2022. **Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression**. JAMA Psychiatry -  [Link](https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2789902)\n\n> Lalousis, P.A., Schmaal, L., Wood, S.J., Reniers, R.L., Barnes, N.M., Chisholm, K., Griffiths, S.L., Stainton, A., Wen, J., Hwang, G. and Davatzikos, C., 2022. **Neurobiologically Based Stratification of Recent Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes**. Biological Psychiatry. -  [Link](https://www.sciencedirect.com/science/article/pii/S0006322322011568#bib50)\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Machine Learning in NeuroImaging for various tasks, e.g., regression, classification and clustering.",
    "version": "0.1.4",
    "project_urls": {
        "Homepage": "https://github.com/anbai106/mlni"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dd01949d18772afd3a9a5404a9a9c7db19fec49ec71c051143269b1caa8dd85f",
                "md5": "be6dd462b3aa0a060255ce03a39a244f",
                "sha256": "0b5582e3d1597c70c0cd0746e10c239b7f3fa9ac09714b6a7ab187032af5a40c"
            },
            "downloads": -1,
            "filename": "mlni-0.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "be6dd462b3aa0a060255ce03a39a244f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 67161,
            "upload_time": "2023-09-24T15:00:44",
            "upload_time_iso_8601": "2023-09-24T15:00:44.674547Z",
            "url": "https://files.pythonhosted.org/packages/dd/01/949d18772afd3a9a5404a9a9c7db19fec49ec71c051143269b1caa8dd85f/mlni-0.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e2cd0317c4c6778d68d58adfcd5c968fa4f055855ebdfc8764effa522510bc01",
                "md5": "c78815305803be259cd0d545d9188f60",
                "sha256": "533910c563dcc66ddd5c48ba481980f0f53e2739f2faeeda56ecdb3dad331415"
            },
            "downloads": -1,
            "filename": "mlni-0.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "c78815305803be259cd0d545d9188f60",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 44732,
            "upload_time": "2023-09-24T15:00:46",
            "upload_time_iso_8601": "2023-09-24T15:00:46.511574Z",
            "url": "https://files.pythonhosted.org/packages/e2/cd/0317c4c6778d68d58adfcd5c968fa4f055855ebdfc8764effa522510bc01/mlni-0.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-24 15:00:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "anbai106",
    "github_project": "mlni",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "mlni"
}
        
Elapsed time: 0.12845s