| Name | mlni JSON |
| Version |
0.1.4
JSON |
| download |
| home_page | https://github.com/anbai106/mlni |
| Summary | Machine Learning in NeuroImaging for various tasks, e.g., regression, classification and clustering. |
| upload_time | 2023-09-24 15:00:46 |
| maintainer | |
| docs_url | None |
| author | junhao.wen |
| requires_python | |
| license | |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
<h1 align="center">
<a href="https://anbai106.github.io/mlni/">
<img src="https://anbai106.github.io/mlni/images/mlni.png" alt="mlni Logo">
</a>
<br/>
MLNI
</h1>
<p align="center"><strong>Machine Learning in NeuroImaging</strong></p>
<p align="center">
<a href="https://anbai106.github.io/mlni/">Documentation</a>
</p>
## `MLNI`
MLNI is a python package that performs various tasks using neuroimaging data: i) binary classification for disease diagnosis, following good practice proposed in [AD-ML](https://github.com/aramis-lab/AD-ML); ii) regression prediction, such as age prediction; and iii) semi-supervised clustering with [HYDRA](https://github.com/evarol/HYDRA).
> :warning: **The documentation of this software is currently under development**
## Citing this work
### If you use this software for clustering:
> Varol, E., Sotiras, A., Davatzikos, C., 2017. **HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework**. Neuroimage, 145, pp.346-364. [doi:10.1016/j.neuroimage.2016.02.041](https://www.sciencedirect.com/science/article/abs/pii/S1053811916001506?via%3Dihub) - [Paper in PDF](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358/pdf/nihms762663.pdf)
### If you use this software for classification or regression:
> Wen, J., Samper-González, J., Bottani, S., Routier, A., Burgos, N., Jacquemont, T., Fontanella, S., Durrleman, S., Epelbaum, S., Bertrand, A. and Colliot, O., 2020. **Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimer’s disease**. Neuroinformatics, pp.1-22. [doi:10.1007/s12021-020-09469-5](https://link.springer.com/article/10.1007/s12021-020-09469-5) - [Paper in PDF](https://arxiv.org/abs/1812.11183)
> J. Samper-Gonzalez, N. Burgos, S. Bottani, S. Fontanella, P. Lu, A. Marcoux, A. Routier, J. Guillon, M. Bacci, J. Wen, A. Bertrand, H. Bertin, M.-O. Habert, S. Durrleman, T. Evgeniou and O. Colliot, **Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data**. NeuroImage, 183:504–521, 2018 [doi:10.1016/j.neuroimage.2018.08.042](https://doi.org/10.1016/j.neuroimage.2018.08.042) - [Paper in PDF](https://hal.inria.fr/hal-01858384/document) - [Supplementary material](https://hal.inria.fr/hal-01858384/file/supplementary_data.xlsx)
## Publication using MLNI
> Wen, J., Varol, E., Davatzikos, C., 2020. **Multi-scale feature reduction and semi-supervised learning for parsing neuroanatomical heterogeneity**. Organization for Human Brain Mapping. - [Link](https://www.researchgate.net/publication/346965816_Multi-scale_feature_reduction_and_semi-supervised_learning_for_parsing_neuroanatomical_heterogeneity)
> Wen, J., Varol, E., Davatzikos, C., 2021. **Multi-scale semi-supervised clustering of brain images: deriving disease subtypes**. MedIA. - [Link](https://www.sciencedirect.com/science/article/abs/pii/S1361841521003492)
> Wen, J., Fu, C.H., Tosun, Davatzikos, C. 2022. **Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression**. JAMA Psychiatry - [Link](https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2789902)
> Lalousis, P.A., Schmaal, L., Wood, S.J., Reniers, R.L., Barnes, N.M., Chisholm, K., Griffiths, S.L., Stainton, A., Wen, J., Hwang, G. and Davatzikos, C., 2022. **Neurobiologically Based Stratification of Recent Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes**. Biological Psychiatry. - [Link](https://www.sciencedirect.com/science/article/pii/S0006322322011568#bib50)
Raw data
{
"_id": null,
"home_page": "https://github.com/anbai106/mlni",
"name": "mlni",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "junhao.wen",
"author_email": "junhao.wen89@email.com",
"download_url": "https://files.pythonhosted.org/packages/e2/cd/0317c4c6778d68d58adfcd5c968fa4f055855ebdfc8764effa522510bc01/mlni-0.1.4.tar.gz",
"platform": null,
"description": "<h1 align=\"center\">\n <a href=\"https://anbai106.github.io/mlni/\">\n <img src=\"https://anbai106.github.io/mlni/images/mlni.png\" alt=\"mlni Logo\">\n </a>\n <br/>\n MLNI\n</h1>\n\n<p align=\"center\"><strong>Machine Learning in NeuroImaging</strong></p>\n\n<p align=\"center\">\n <a href=\"https://anbai106.github.io/mlni/\">Documentation</a>\n</p>\n\n## `MLNI`\nMLNI is a python package that performs various tasks using neuroimaging data: i) binary classification for disease diagnosis, following good practice proposed in [AD-ML](https://github.com/aramis-lab/AD-ML); ii) regression prediction, such as age prediction; and iii) semi-supervised clustering with [HYDRA](https://github.com/evarol/HYDRA).\n\n> :warning: **The documentation of this software is currently under development**\n\n## Citing this work\n### If you use this software for clustering:\n> Varol, E., Sotiras, A., Davatzikos, C., 2017. **HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework**. Neuroimage, 145, pp.346-364. [doi:10.1016/j.neuroimage.2016.02.041](https://www.sciencedirect.com/science/article/abs/pii/S1053811916001506?via%3Dihub) - [Paper in PDF](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358/pdf/nihms762663.pdf)\n\n### If you use this software for classification or regression:\n> Wen, J., Samper-Gonz\u00e1lez, J., Bottani, S., Routier, A., Burgos, N., Jacquemont, T., Fontanella, S., Durrleman, S., Epelbaum, S., Bertrand, A. and Colliot, O., 2020. **Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimer\u2019s disease**. Neuroinformatics, pp.1-22. [doi:10.1007/s12021-020-09469-5](https://link.springer.com/article/10.1007/s12021-020-09469-5) - [Paper in PDF](https://arxiv.org/abs/1812.11183)\n\n> J. Samper-Gonzalez, N. Burgos, S. Bottani, S. Fontanella, P. Lu, A. Marcoux, A. Routier, J. Guillon, M. Bacci, J. Wen, A. Bertrand, H. Bertin, M.-O. Habert, S. Durrleman, T. Evgeniou and O. Colliot, **Reproducible evaluation of classification methods in Alzheimer\u2019s disease: Framework and application to MRI and PET data**. NeuroImage, 183:504\u2013521, 2018 [doi:10.1016/j.neuroimage.2018.08.042](https://doi.org/10.1016/j.neuroimage.2018.08.042) - [Paper in PDF](https://hal.inria.fr/hal-01858384/document) - [Supplementary material](https://hal.inria.fr/hal-01858384/file/supplementary_data.xlsx)\n\n## Publication using MLNI\n> Wen, J., Varol, E., Davatzikos, C., 2020. **Multi-scale feature reduction and semi-supervised learning for parsing neuroanatomical heterogeneity**. Organization for Human Brain Mapping. - [Link](https://www.researchgate.net/publication/346965816_Multi-scale_feature_reduction_and_semi-supervised_learning_for_parsing_neuroanatomical_heterogeneity)\n\n> Wen, J., Varol, E., Davatzikos, C., 2021. **Multi-scale semi-supervised clustering of brain images: deriving disease subtypes**. MedIA. - [Link](https://www.sciencedirect.com/science/article/abs/pii/S1361841521003492)\n\n> Wen, J., Fu, C.H., Tosun, Davatzikos, C. 2022. **Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression**. JAMA Psychiatry - [Link](https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2789902)\n\n> Lalousis, P.A., Schmaal, L., Wood, S.J., Reniers, R.L., Barnes, N.M., Chisholm, K., Griffiths, S.L., Stainton, A., Wen, J., Hwang, G. and Davatzikos, C., 2022. **Neurobiologically Based Stratification of Recent Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes**. Biological Psychiatry. - [Link](https://www.sciencedirect.com/science/article/pii/S0006322322011568#bib50)\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Machine Learning in NeuroImaging for various tasks, e.g., regression, classification and clustering.",
"version": "0.1.4",
"project_urls": {
"Homepage": "https://github.com/anbai106/mlni"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "dd01949d18772afd3a9a5404a9a9c7db19fec49ec71c051143269b1caa8dd85f",
"md5": "be6dd462b3aa0a060255ce03a39a244f",
"sha256": "0b5582e3d1597c70c0cd0746e10c239b7f3fa9ac09714b6a7ab187032af5a40c"
},
"downloads": -1,
"filename": "mlni-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "be6dd462b3aa0a060255ce03a39a244f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 67161,
"upload_time": "2023-09-24T15:00:44",
"upload_time_iso_8601": "2023-09-24T15:00:44.674547Z",
"url": "https://files.pythonhosted.org/packages/dd/01/949d18772afd3a9a5404a9a9c7db19fec49ec71c051143269b1caa8dd85f/mlni-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e2cd0317c4c6778d68d58adfcd5c968fa4f055855ebdfc8764effa522510bc01",
"md5": "c78815305803be259cd0d545d9188f60",
"sha256": "533910c563dcc66ddd5c48ba481980f0f53e2739f2faeeda56ecdb3dad331415"
},
"downloads": -1,
"filename": "mlni-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "c78815305803be259cd0d545d9188f60",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 44732,
"upload_time": "2023-09-24T15:00:46",
"upload_time_iso_8601": "2023-09-24T15:00:46.511574Z",
"url": "https://files.pythonhosted.org/packages/e2/cd/0317c4c6778d68d58adfcd5c968fa4f055855ebdfc8764effa522510bc01/mlni-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-24 15:00:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "anbai106",
"github_project": "mlni",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "mlni"
}