molnetpack


Namemolnetpack JSON
Version 1.1.9 PyPI version JSON
download
home_pageNone
Summary3DMolMS: prediction of tandem mass spectra from 3D molecular conformations
upload_time2024-08-29 15:51:35
maintainerNone
docs_urlNone
authorYuhui Hong, Sujun Li, Christopher J Welch, Shane Tichy, Yuzhen Ye, Haixu Tang
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 3DMolMS

[![CC BY-NC-SA 4.0][cc-by-nc-sa-shield]][cc-by-nc-sa] (free for academic use) 

**3D** **Mol**ecular Network for **M**ass **S**pectra Prediction (3DMolMS) is a deep neural network model to predict the MS/MS spectra of compounds from their 3D conformations. This model's molecular representation, learned through MS/MS prediction tasks, can be further applied to enhance performance in other molecular-related tasks, such as predicting retention times and collision cross sections. 

[Read our paper in Bioinformatics](https://academic.oup.com/bioinformatics/article/39/6/btad354/7186501) | [Try our online service at GNPS](https://spectrumprediction.gnps2.org) | [Install from PyPI](https://pypi.org/project/molnetpack/)

## Installation

3DMolMS is available on PyPI. You can install the latest version using `pip`:

```bash
pip install molnetpack

# PyTorch must be installed separately. 
# For CUDA 11.6, install PyTorch with the following command:
pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116

# For CUDA 11.7, use:
pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117

# For CPU-only usage, use:
pip install torch==1.13.0+cpu torchvision==0.14.0+cpu torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cpu
```

3DMolMS can also be installed through source codes:

```bash
git clone https://github.com/JosieHong/3DMolMS.git
cd 3DMolMS

pip install .
```

## Usage

To get started quickly, you can load a CSV or MGF file to predict MS/MS and then plot the predicted results. 

```python
import torch
from molnetpack import MolNet

# Set the device to CPU for CPU-only usage:
device = torch.device("cpu")

# For GPU usage, set the device as follows (replace '0' with your desired GPU index):
# gpu_index = 0
# device = torch.device(f"cuda:{gpu_index}")

# Instantiate a MolNet object
molnet_engine = MolNet(device, seed=42) # The random seed can be any integer. 

# Load input data (here we use a CSV file as an example)
molnet_engine.load_data(path_to_test_data='./test/input_msms.csv') # Increasing the batch size if you wanna speed up.
# molnet_engine.load_data(path_to_test_data='./test/input_msms.mgf') # MGF file is also supported
# molnet_engine.load_data(path_to_test_data='./test/input_msms.pkl') # PKL file is faster. 

# Predict MS/MS
spectra1 = molnet_engine.pred_msms(path_to_results='./test/output_qtof_msms.mgf', instrument='qtof')
# You could also download the checkpoint from release and set the 'path_to_checkpoint':
# spectra = molnet_engine.pred_msms(path_to_results='./test/output_msms.mgf', path_to_checkpoint='<path to the checkpoint>')
# Instrument can be 'qtof' or 'orbitrap'. 

# Plot the predicted MS/MS with 3D molecular conformation
molnet_engine.plot_msms(dir_to_img='./img/', instrument='qtof')
```

For CCS prediction, please use the following codes after instantiating a MolNet object. 

```python
# Load input data
molnet_engine.load_data(path_to_test_data='./test/input_ccs.csv')

# Pred CCS
ccs_df = molnet_engine.pred_ccs(path_to_results='./test/output_ccs.csv')
```

For RT prediction, please use the following code after instantiating a MolNet object. Please note that since this model is trained on the METLIN-SMRT dataset, the predicted retention time is under the same experimental conditions as the METLIN-SMRT set.

```python
# Load input data
molnet_engine.load_data(path_to_test_data='./test/input_rt.csv')

# Pred RT
rt_df = molnet_engine.pred_rt(path_to_results='./test/output_rt.csv')
```

For saving the molecular embeddings, please use the following codes after instantiating a MolNet object. 

```python
# Load input data
molnet_engine.load_data(path_to_test_data='./test/input_savefeat.csv')

# Inference to get the features
features = molnet_engine.save_features()

print('Titles:', ids)
print('Features shape:', features.shape)
```

The sample input files, a CSV and an MGF, are located at `./test/demo_input.csv` and `./test/demo_input.mgf`, respectively. If the input data is only expected to be used in CCS prediction, you may assign an arbitrary numerical value to the `Collision_Energy` field in the CSV file or to `COLLISION_ENERGY` in the MGF file. It's important to note that during the data loading phase, any input formats that are not supported will be automatically excluded. Below is a table outlining the types of input data that are supported: 

| Item             | Supported input                                               |
|------------------|---------------------------------------------------------------|
| Atom number      | <=300                                                         |
| Atom types       | 'C', 'O', 'N', 'H', 'P', 'S', 'F', 'Cl', 'B', 'Br', 'I', 'Na' |
| Precursor types  | '[M+H]+', '[M-H]-', '[M+H-H2O]+', '[M+Na]+', '[M+2H]2+'       |
| Collision energy | any number                                                    |

The documents for running MS/MS prediction from source codes are at [MSMS_PRED.md](docs/MSMS_PRED.md). 



## Citation

If you use 3DMolMS in your research, please cite our paper:

```
@article{hong20233dmolms,
  title={3DMolMS: prediction of tandem mass spectra from 3D molecular conformations},
  author={Hong, Yuhui and Li, Sujun and Welch, Christopher J and Tichy, Shane and Ye, Yuzhen and Tang, Haixu},
  journal={Bioinformatics},
  volume={39},
  number={6},
  pages={btad354},
  year={2023},
  publisher={Oxford University Press}
}
@article{hong2024enhanced,
  title={Enhanced structure-based prediction of chiral stationary phases for chromatographic enantioseparation from 3D molecular conformations},
  author={Hong, Yuhui and Welch, Christopher J and Piras, Patrick and Tang, Haixu},
  journal={Analytical Chemistry},
  volume={96},
  number={6},
  pages={2351--2359},
  year={2024},
  publisher={ACS Publications}
}
```

Thank you for considering 3DMolMS for your research needs!

## License

This work is licensed under a
[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].

[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]

[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/
[cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
[cc-by-nc-sa-shield]: https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "molnetpack",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Yuhui Hong <yuhhong@iu.edu>",
    "keywords": null,
    "author": "Yuhui Hong, Sujun Li, Christopher J Welch, Shane Tichy, Yuzhen Ye, Haixu Tang",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/6c/7b/0a9a446c8e1ee01939964703d38ee874d1090bef63c0f926d8a586c4e8d7/molnetpack-1.1.9.tar.gz",
    "platform": null,
    "description": "# 3DMolMS\n\n[![CC BY-NC-SA 4.0][cc-by-nc-sa-shield]][cc-by-nc-sa] (free for academic use) \n\n**3D** **Mol**ecular Network for **M**ass **S**pectra Prediction (3DMolMS) is a deep neural network model to predict the MS/MS spectra of compounds from their 3D conformations. This model's molecular representation, learned through MS/MS prediction tasks, can be further applied to enhance performance in other molecular-related tasks, such as predicting retention times and collision cross sections. \n\n[Read our paper in Bioinformatics](https://academic.oup.com/bioinformatics/article/39/6/btad354/7186501) | [Try our online service at GNPS](https://spectrumprediction.gnps2.org) | [Install from PyPI](https://pypi.org/project/molnetpack/)\n\n## Installation\n\n3DMolMS is available on PyPI. You can install the latest version using `pip`:\n\n```bash\npip install molnetpack\n\n# PyTorch must be installed separately. \n# For CUDA 11.6, install PyTorch with the following command:\npip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116\n\n# For CUDA 11.7, use:\npip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117\n\n# For CPU-only usage, use:\npip install torch==1.13.0+cpu torchvision==0.14.0+cpu torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cpu\n```\n\n3DMolMS can also be installed through source codes:\n\n```bash\ngit clone https://github.com/JosieHong/3DMolMS.git\ncd 3DMolMS\n\npip install .\n```\n\n## Usage\n\nTo get started quickly, you can load a CSV or MGF file to predict MS/MS and then plot the predicted results. \n\n```python\nimport torch\nfrom molnetpack import MolNet\n\n# Set the device to CPU for CPU-only usage:\ndevice = torch.device(\"cpu\")\n\n# For GPU usage, set the device as follows (replace '0' with your desired GPU index):\n# gpu_index = 0\n# device = torch.device(f\"cuda:{gpu_index}\")\n\n# Instantiate a MolNet object\nmolnet_engine = MolNet(device, seed=42) # The random seed can be any integer. \n\n# Load input data (here we use a CSV file as an example)\nmolnet_engine.load_data(path_to_test_data='./test/input_msms.csv') # Increasing the batch size if you wanna speed up.\n# molnet_engine.load_data(path_to_test_data='./test/input_msms.mgf') # MGF file is also supported\n# molnet_engine.load_data(path_to_test_data='./test/input_msms.pkl') # PKL file is faster. \n\n# Predict MS/MS\nspectra1 = molnet_engine.pred_msms(path_to_results='./test/output_qtof_msms.mgf', instrument='qtof')\n# You could also download the checkpoint from release and set the 'path_to_checkpoint':\n# spectra = molnet_engine.pred_msms(path_to_results='./test/output_msms.mgf', path_to_checkpoint='<path to the checkpoint>')\n# Instrument can be 'qtof' or 'orbitrap'. \n\n# Plot the predicted MS/MS with 3D molecular conformation\nmolnet_engine.plot_msms(dir_to_img='./img/', instrument='qtof')\n```\n\nFor CCS prediction, please use the following codes after instantiating a MolNet object. \n\n```python\n# Load input data\nmolnet_engine.load_data(path_to_test_data='./test/input_ccs.csv')\n\n# Pred CCS\nccs_df = molnet_engine.pred_ccs(path_to_results='./test/output_ccs.csv')\n```\n\nFor RT prediction, please use the following code after instantiating a MolNet object. Please note that since this model is trained on the METLIN-SMRT dataset, the predicted retention time is under the same experimental conditions as the METLIN-SMRT set.\n\n```python\n# Load input data\nmolnet_engine.load_data(path_to_test_data='./test/input_rt.csv')\n\n# Pred RT\nrt_df = molnet_engine.pred_rt(path_to_results='./test/output_rt.csv')\n```\n\nFor saving the molecular embeddings, please use the following codes after instantiating a MolNet object. \n\n```python\n# Load input data\nmolnet_engine.load_data(path_to_test_data='./test/input_savefeat.csv')\n\n# Inference to get the features\nfeatures = molnet_engine.save_features()\n\nprint('Titles:', ids)\nprint('Features shape:', features.shape)\n```\n\nThe sample input files, a CSV and an MGF, are located at `./test/demo_input.csv` and `./test/demo_input.mgf`, respectively. If the input data is only expected to be used in CCS prediction, you may assign an arbitrary numerical value to the `Collision_Energy` field in the CSV file or to `COLLISION_ENERGY` in the MGF file. It's important to note that during the data loading phase, any input formats that are not supported will be automatically excluded. Below is a table outlining the types of input data that are supported: \n\n| Item             | Supported input                                               |\n|------------------|---------------------------------------------------------------|\n| Atom number      | <=300                                                         |\n| Atom types       | 'C', 'O', 'N', 'H', 'P', 'S', 'F', 'Cl', 'B', 'Br', 'I', 'Na' |\n| Precursor types  | '[M+H]+', '[M-H]-', '[M+H-H2O]+', '[M+Na]+', '[M+2H]2+'       |\n| Collision energy | any number                                                    |\n\nThe documents for running MS/MS prediction from source codes are at [MSMS_PRED.md](docs/MSMS_PRED.md). \n\n\n\n## Citation\n\nIf you use 3DMolMS in your research, please cite our paper:\n\n```\n@article{hong20233dmolms,\n  title={3DMolMS: prediction of tandem mass spectra from 3D molecular conformations},\n  author={Hong, Yuhui and Li, Sujun and Welch, Christopher J and Tichy, Shane and Ye, Yuzhen and Tang, Haixu},\n  journal={Bioinformatics},\n  volume={39},\n  number={6},\n  pages={btad354},\n  year={2023},\n  publisher={Oxford University Press}\n}\n@article{hong2024enhanced,\n  title={Enhanced structure-based prediction of chiral stationary phases for chromatographic enantioseparation from 3D molecular conformations},\n  author={Hong, Yuhui and Welch, Christopher J and Piras, Patrick and Tang, Haixu},\n  journal={Analytical Chemistry},\n  volume={96},\n  number={6},\n  pages={2351--2359},\n  year={2024},\n  publisher={ACS Publications}\n}\n```\n\nThank you for considering 3DMolMS for your research needs!\n\n## License\n\nThis work is licensed under a\n[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].\n\n[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]\n\n[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/\n[cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png\n[cc-by-nc-sa-shield]: https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "3DMolMS: prediction of tandem mass spectra from 3D molecular conformations",
    "version": "1.1.9",
    "project_urls": {
        "Changelog": "https://github.com/JosieHong/3DMolMS/blob/main/CHANGE_LOG.md",
        "Homepage": "https://github.com/JosieHong/3DMolMS/",
        "Issues": "https://github.com/JosieHong/3DMolMS/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "78d7a8c186abbfe44e4d31fa70f7579dc7bfe21e0bdc1c00608c2d14664a217e",
                "md5": "4e14339e3a720998521369a2f1c6ef72",
                "sha256": "f31a5e17dbcefadb8c1983861607a0a9a9677ab2b054a5705dd6301abae11ba9"
            },
            "downloads": -1,
            "filename": "molnetpack-1.1.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4e14339e3a720998521369a2f1c6ef72",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 30166,
            "upload_time": "2024-08-29T15:51:34",
            "upload_time_iso_8601": "2024-08-29T15:51:34.080341Z",
            "url": "https://files.pythonhosted.org/packages/78/d7/a8c186abbfe44e4d31fa70f7579dc7bfe21e0bdc1c00608c2d14664a217e/molnetpack-1.1.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6c7b0a9a446c8e1ee01939964703d38ee874d1090bef63c0f926d8a586c4e8d7",
                "md5": "cfefcc25e64f87d03f06fc56751a94fe",
                "sha256": "ceca4dc1bbd51a0985ca83d8440f640785436dea31094618b6df65e4e0194121"
            },
            "downloads": -1,
            "filename": "molnetpack-1.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "cfefcc25e64f87d03f06fc56751a94fe",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 27799,
            "upload_time": "2024-08-29T15:51:35",
            "upload_time_iso_8601": "2024-08-29T15:51:35.147847Z",
            "url": "https://files.pythonhosted.org/packages/6c/7b/0a9a446c8e1ee01939964703d38ee874d1090bef63c0f926d8a586c4e8d7/molnetpack-1.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-29 15:51:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JosieHong",
    "github_project": "3DMolMS",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "molnetpack"
}
        
Elapsed time: 0.37456s