| Name | mvtcr JSON |
| Version |
0.2.1.1
JSON |
| download |
| home_page | https://github.com/SchubertLab/mvTCR |
| Summary | mvTCR: A multimodal generative model to learn a unified representation across TCR sequences and scRNAseq data for joint analysis of single-cell immune profiling data |
| upload_time | 2024-08-06 16:22:21 |
| maintainer | Felix Drost, Yang An, Irene Bonafonte Pardàs, Jan-Philipp Leusch |
| docs_url | None |
| author | Felix Drost, Yang An, Lisa M Dratva, Rik GH Lindeboom, Muzlifah Haniffa, Sarah A Teichmann, Fabian Theis, Mohammad Lotfollahi, Benjamin Schubert |
| requires_python | None |
| license | None |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# mvTCR
mvTCR is a multimodal generative model to learn a unified representation across across TCR sequences and scRNAseq data and datasets for joint analysis of single-cell immune profiling data.
- The publication can be found [here](https://www.nature.com/articles/s41467-024-49806-9)
- GitHub can be found [here](https://github.com/SchubertLab/mvTCR)
### Installation
To install mvTCR follow these steps:
1. Create a [conda](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment) environment: <code>conda create -n mvTCR python=3.10</code>
2. Install mvTCR <code>pip install mvTCR</code>
3. Install [PyTorch](https://pytorch.org/get-started/locally/) e.g. v2.1.2 with the appropriate CUDA version
### Tutorial
Please have a look at our tutorial notebooks found [here](https://github.com/SchubertLab/mvTCR/tree/master/tutorials).
### Bugs and Errors
If you find any bugs or run into errors please report them to our [GitHub](https://github.com/SchubertLab/mvTCR/issues).
#### Reproducibility
The [reproducibility GitHub](https://github.com/SchubertLab/mvTCR_reproducibility) features experiments and code used in the publication. If you want to reproduce them, please use mvTCR v0.1.3 together with PyTorch v1.8.0 .
Raw data
{
"_id": null,
"home_page": "https://github.com/SchubertLab/mvTCR",
"name": "mvtcr",
"maintainer": "Felix Drost, Yang An, Irene Bonafonte Pard\u00e0s, Jan-Philipp Leusch",
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Felix Drost, Yang An, Lisa M Dratva, Rik GH Lindeboom, Muzlifah Haniffa, Sarah A Teichmann, Fabian Theis, Mohammad Lotfollahi, Benjamin Schubert",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/28/e5/ea68930d3d54b84b0ab2b67d698c4e31b4b0a01075534206bf6feb01c484/mvtcr-0.2.1.1.tar.gz",
"platform": null,
"description": "# mvTCR\r\n\r\nmvTCR is a multimodal generative model to learn a unified representation across across TCR sequences and scRNAseq data and datasets for joint analysis of single-cell immune profiling data.\r\n\r\n- The publication can be found [here](https://www.nature.com/articles/s41467-024-49806-9) \r\n- GitHub can be found [here](https://github.com/SchubertLab/mvTCR)\r\n\r\n### Installation\r\n\r\nTo install mvTCR follow these steps:\r\n1. Create a [conda](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment) environment: <code>conda create -n mvTCR python=3.10</code>\r\n2. Install mvTCR <code>pip install mvTCR</code>\r\n3. Install [PyTorch](https://pytorch.org/get-started/locally/) e.g. v2.1.2 with the appropriate CUDA version\r\n\r\n### Tutorial\r\n\r\nPlease have a look at our tutorial notebooks found [here](https://github.com/SchubertLab/mvTCR/tree/master/tutorials).\r\n\r\n### Bugs and Errors\r\n\r\nIf you find any bugs or run into errors please report them to our [GitHub](https://github.com/SchubertLab/mvTCR/issues).\r\n\r\n\r\n#### Reproducibility \r\n\r\nThe [reproducibility GitHub](https://github.com/SchubertLab/mvTCR_reproducibility) features experiments and code used in the publication. If you want to reproduce them, please use mvTCR v0.1.3 together with PyTorch v1.8.0 .\r\n",
"bugtrack_url": null,
"license": null,
"summary": "mvTCR: A multimodal generative model to learn a unified representation across TCR sequences and scRNAseq data for joint analysis of single-cell immune profiling data",
"version": "0.2.1.1",
"project_urls": {
"Homepage": "https://github.com/SchubertLab/mvTCR"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5e880eccc98eea403d6cad95aeedd8c5f3a1f274f0f4b40cb7ee42e9f0ce7178",
"md5": "c3ee2797f7ffbd59be33aa9b8776b3a6",
"sha256": "66d1a9a7c600015a451a6847ca62e6704c808a9c610175a8ed150950351c1d11"
},
"downloads": -1,
"filename": "mvtcr-0.2.1.1-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "c3ee2797f7ffbd59be33aa9b8776b3a6",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 66362,
"upload_time": "2024-08-06T16:22:19",
"upload_time_iso_8601": "2024-08-06T16:22:19.754548Z",
"url": "https://files.pythonhosted.org/packages/5e/88/0eccc98eea403d6cad95aeedd8c5f3a1f274f0f4b40cb7ee42e9f0ce7178/mvtcr-0.2.1.1-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "28e5ea68930d3d54b84b0ab2b67d698c4e31b4b0a01075534206bf6feb01c484",
"md5": "94d8f159817d742970e0dc7cffcc650c",
"sha256": "bcbcb1f5d07cb03d1e23ebf8737de41158979631f5f18eb760f32988b8b1b6fe"
},
"downloads": -1,
"filename": "mvtcr-0.2.1.1.tar.gz",
"has_sig": false,
"md5_digest": "94d8f159817d742970e0dc7cffcc650c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 44931,
"upload_time": "2024-08-06T16:22:21",
"upload_time_iso_8601": "2024-08-06T16:22:21.364914Z",
"url": "https://files.pythonhosted.org/packages/28/e5/ea68930d3d54b84b0ab2b67d698c4e31b4b0a01075534206bf6feb01c484/mvtcr-0.2.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-06 16:22:21",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "SchubertLab",
"github_project": "mvTCR",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "mvtcr"
}