mvtcr


Namemvtcr JSON
Version 0.2.1.1 PyPI version JSON
download
home_pagehttps://github.com/SchubertLab/mvTCR
SummarymvTCR: A multimodal generative model to learn a unified representation across TCR sequences and scRNAseq data for joint analysis of single-cell immune profiling data
upload_time2024-08-06 16:22:21
maintainerFelix Drost, Yang An, Irene Bonafonte Pardàs, Jan-Philipp Leusch
docs_urlNone
authorFelix Drost, Yang An, Lisa M Dratva, Rik GH Lindeboom, Muzlifah Haniffa, Sarah A Teichmann, Fabian Theis, Mohammad Lotfollahi, Benjamin Schubert
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mvTCR

mvTCR is a multimodal generative model to learn a unified representation across across TCR sequences and scRNAseq data and datasets for joint analysis of single-cell immune profiling data.

- The publication can be found [here](https://www.nature.com/articles/s41467-024-49806-9) 
- GitHub can be found [here](https://github.com/SchubertLab/mvTCR)

### Installation

To install mvTCR follow these steps:
1. Create a [conda](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment) environment: <code>conda create -n mvTCR python=3.10</code>
2. Install mvTCR <code>pip install mvTCR</code>
3. Install [PyTorch](https://pytorch.org/get-started/locally/) e.g. v2.1.2 with the appropriate CUDA version

### Tutorial

Please have a look at our tutorial notebooks found [here](https://github.com/SchubertLab/mvTCR/tree/master/tutorials).

### Bugs and Errors

If you find any bugs or run into errors please report them to our [GitHub](https://github.com/SchubertLab/mvTCR/issues).


#### Reproducibility 

The [reproducibility GitHub](https://github.com/SchubertLab/mvTCR_reproducibility) features experiments and code used in the publication. If you want to reproduce them, please use mvTCR v0.1.3 together with PyTorch v1.8.0 .

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SchubertLab/mvTCR",
    "name": "mvtcr",
    "maintainer": "Felix Drost, Yang An, Irene Bonafonte Pard\u00e0s, Jan-Philipp Leusch",
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Felix Drost, Yang An, Lisa M Dratva, Rik GH Lindeboom, Muzlifah Haniffa, Sarah A Teichmann, Fabian Theis, Mohammad Lotfollahi, Benjamin Schubert",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/28/e5/ea68930d3d54b84b0ab2b67d698c4e31b4b0a01075534206bf6feb01c484/mvtcr-0.2.1.1.tar.gz",
    "platform": null,
    "description": "# mvTCR\r\n\r\nmvTCR is a multimodal generative model to learn a unified representation across across TCR sequences and scRNAseq data and datasets for joint analysis of single-cell immune profiling data.\r\n\r\n- The publication can be found [here](https://www.nature.com/articles/s41467-024-49806-9) \r\n- GitHub can be found [here](https://github.com/SchubertLab/mvTCR)\r\n\r\n### Installation\r\n\r\nTo install mvTCR follow these steps:\r\n1. Create a [conda](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment) environment: <code>conda create -n mvTCR python=3.10</code>\r\n2. Install mvTCR <code>pip install mvTCR</code>\r\n3. Install [PyTorch](https://pytorch.org/get-started/locally/) e.g. v2.1.2 with the appropriate CUDA version\r\n\r\n### Tutorial\r\n\r\nPlease have a look at our tutorial notebooks found [here](https://github.com/SchubertLab/mvTCR/tree/master/tutorials).\r\n\r\n### Bugs and Errors\r\n\r\nIf you find any bugs or run into errors please report them to our [GitHub](https://github.com/SchubertLab/mvTCR/issues).\r\n\r\n\r\n#### Reproducibility \r\n\r\nThe [reproducibility GitHub](https://github.com/SchubertLab/mvTCR_reproducibility) features experiments and code used in the publication. If you want to reproduce them, please use mvTCR v0.1.3 together with PyTorch v1.8.0 .\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "mvTCR: A multimodal generative model to learn a unified representation across TCR sequences and scRNAseq data for joint analysis of single-cell immune profiling data",
    "version": "0.2.1.1",
    "project_urls": {
        "Homepage": "https://github.com/SchubertLab/mvTCR"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5e880eccc98eea403d6cad95aeedd8c5f3a1f274f0f4b40cb7ee42e9f0ce7178",
                "md5": "c3ee2797f7ffbd59be33aa9b8776b3a6",
                "sha256": "66d1a9a7c600015a451a6847ca62e6704c808a9c610175a8ed150950351c1d11"
            },
            "downloads": -1,
            "filename": "mvtcr-0.2.1.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c3ee2797f7ffbd59be33aa9b8776b3a6",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 66362,
            "upload_time": "2024-08-06T16:22:19",
            "upload_time_iso_8601": "2024-08-06T16:22:19.754548Z",
            "url": "https://files.pythonhosted.org/packages/5e/88/0eccc98eea403d6cad95aeedd8c5f3a1f274f0f4b40cb7ee42e9f0ce7178/mvtcr-0.2.1.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "28e5ea68930d3d54b84b0ab2b67d698c4e31b4b0a01075534206bf6feb01c484",
                "md5": "94d8f159817d742970e0dc7cffcc650c",
                "sha256": "bcbcb1f5d07cb03d1e23ebf8737de41158979631f5f18eb760f32988b8b1b6fe"
            },
            "downloads": -1,
            "filename": "mvtcr-0.2.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "94d8f159817d742970e0dc7cffcc650c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 44931,
            "upload_time": "2024-08-06T16:22:21",
            "upload_time_iso_8601": "2024-08-06T16:22:21.364914Z",
            "url": "https://files.pythonhosted.org/packages/28/e5/ea68930d3d54b84b0ab2b67d698c4e31b4b0a01075534206bf6feb01c484/mvtcr-0.2.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-06 16:22:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SchubertLab",
    "github_project": "mvTCR",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "mvtcr"
}
        
Elapsed time: 0.43134s