nanoplotter


Namenanoplotter JSON
Version 0.36.0 PyPI version JSON
download
home_pagehttps://github.com/wdecoster/nanoplotter
SummaryPlotting functions of Oxford Nanopore sequencing data
upload_time2018-03-23 10:40:09
maintainer
docs_urlNone
authorWouter De Coster
requires_python>=3
licenseMIT
keywords nanopore sequencing plotting quality control
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # nanoplotter
This module provides functions for plotting data extracted from Oxford Nanopore sequencing reads and alignments, but some of it's functions can also be used for other applications.

[![Twitter URL](https://img.shields.io/twitter/url/https/twitter.com/wouter_decoster.svg?style=social&label=Follow%20%40wouter_decoster)](https://twitter.com/wouter_decoster)
[![install with conda](https://anaconda.org/bioconda/nanoplotter/badges/installer/conda.svg)](https://anaconda.org/bioconda/nanoplotter)
[![Build Status](https://travis-ci.org/wdecoster/nanoplotter.svg?branch=master)](https://travis-ci.org/wdecoster/nanoplotter)



## FUNCTIONS
* Check if a specified color is a valid matplotlib color `checkvalidColor(color)`  
* Check if a specified output format is valid `checkvalidFormat(format)`  
* Create a bivariate plot with dots, hexbins and/or kernel density estimates. Also arguments for specifying axis names, color and xlim/ylim. `scatter(x, y, names, path, color, format, plots, stat=None, log=False, minvalx=0, minvaly=0)`  
* Create cumulative yield plot and evaluate read length and quality over time `timePlots(df, path, color, format)`  
* Create length distribution histogram and density curve `lengthPlots(array, name, path, n50, color, format, log=False)`  
* Create flowcell physical layout in numpy array `makeLayout()`  
* Present the activity (number of reads) per channel on the flowcell as a heatmap `spatialHeatmap(array, title, path, color, format)`  


## INSTALLATION
```bash
pip install nanoplotter
```
or  
[![install with conda](https://anaconda.org/bioconda/nanoplotter/badges/installer/conda.svg)](https://anaconda.org/bioconda/nanoplotter)
```
conda install -c bioconda nanoplotter
```

## CITATION
If you use this tool, please consider citing our [publication](https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty149/4934939).
            

Raw data

            {
    "maintainer": "", 
    "docs_url": null, 
    "requires_python": ">=3", 
    "maintainer_email": "", 
    "cheesecake_code_kwalitee_id": null, 
    "keywords": "nanopore sequencing plotting quality control", 
    "upload_time": "2018-03-23 10:40:09", 
    "author": "Wouter De Coster", 
    "home_page": "https://github.com/wdecoster/nanoplotter", 
    "github_user": "wdecoster", 
    "download_url": "https://pypi.python.org/packages/8a/b6/4cc5b84480e376d3fcd8f3f2559a25bfeb2c04b1579305dee2b0b89a538a/nanoplotter-0.36.0.tar.gz", 
    "platform": "", 
    "version": "0.36.0", 
    "cheesecake_documentation_id": null, 
    "description": "# nanoplotter\nThis module provides functions for plotting data extracted from Oxford Nanopore sequencing reads and alignments, but some of it's functions can also be used for other applications.\n\n[![Twitter URL](https://img.shields.io/twitter/url/https/twitter.com/wouter_decoster.svg?style=social&label=Follow%20%40wouter_decoster)](https://twitter.com/wouter_decoster)\n[![install with conda](https://anaconda.org/bioconda/nanoplotter/badges/installer/conda.svg)](https://anaconda.org/bioconda/nanoplotter)\n[![Build Status](https://travis-ci.org/wdecoster/nanoplotter.svg?branch=master)](https://travis-ci.org/wdecoster/nanoplotter)\n\n\n\n## FUNCTIONS\n* Check if a specified color is a valid matplotlib color `checkvalidColor(color)`  \n* Check if a specified output format is valid `checkvalidFormat(format)`  \n* Create a bivariate plot with dots, hexbins and/or kernel density estimates. Also arguments for specifying axis names, color and xlim/ylim. `scatter(x, y, names, path, color, format, plots, stat=None, log=False, minvalx=0, minvaly=0)`  \n* Create cumulative yield plot and evaluate read length and quality over time `timePlots(df, path, color, format)`  \n* Create length distribution histogram and density curve `lengthPlots(array, name, path, n50, color, format, log=False)`  \n* Create flowcell physical layout in numpy array `makeLayout()`  \n* Present the activity (number of reads) per channel on the flowcell as a heatmap `spatialHeatmap(array, title, path, color, format)`  \n\n\n## INSTALLATION\n```bash\npip install nanoplotter\n```\nor  \n[![install with conda](https://anaconda.org/bioconda/nanoplotter/badges/installer/conda.svg)](https://anaconda.org/bioconda/nanoplotter)\n```\nconda install -c bioconda nanoplotter\n```\n\n## CITATION\nIf you use this tool, please consider citing our [publication](https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty149/4934939).", 
    "lcname": "nanoplotter", 
    "bugtrack_url": null, 
    "github": true, 
    "coveralls": false, 
    "name": "nanoplotter", 
    "license": "MIT", 
    "travis_ci": true, 
    "github_project": "nanoplotter", 
    "summary": "Plotting functions of Oxford Nanopore sequencing data", 
    "split_keywords": [
        "nanopore", 
        "sequencing", 
        "plotting", 
        "quality", 
        "control"
    ], 
    "author_email": "decosterwouter@gmail.com", 
    "urls": [
        {
            "has_sig": false, 
            "upload_time": "2018-03-23T10:40:09", 
            "comment_text": "", 
            "python_version": "source", 
            "url": "https://pypi.python.org/packages/8a/b6/4cc5b84480e376d3fcd8f3f2559a25bfeb2c04b1579305dee2b0b89a538a/nanoplotter-0.36.0.tar.gz", 
            "md5_digest": "c01bd44ee73d40309e1fb6a6d5bdc21d", 
            "downloads": 0, 
            "filename": "nanoplotter-0.36.0.tar.gz", 
            "packagetype": "sdist", 
            "path": "8a/b6/4cc5b84480e376d3fcd8f3f2559a25bfeb2c04b1579305dee2b0b89a538a/nanoplotter-0.36.0.tar.gz", 
            "digests": {
                "sha256": "d20e1b07b816a1f7be08163f58dd3aaaf088e7a2a8ee24e7fb8452871f1ec7db", 
                "md5": "c01bd44ee73d40309e1fb6a6d5bdc21d"
            }, 
            "sha256_digest": "d20e1b07b816a1f7be08163f58dd3aaaf088e7a2a8ee24e7fb8452871f1ec7db", 
            "size": 9483
        }
    ], 
    "_id": null, 
    "cheesecake_installability_id": null
}