napari-n2v


Namenapari-n2v JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/juglab/napari-n2v
SummaryA self-supervised denoising algorithm now usable by all in napari.
upload_time2023-08-29 13:30:37
maintainer
docs_urlNone
authorTom Burke, Joran Deschamps
requires_python>=3.8
licenseBSD-3-Clause
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # napari-n2v

[![License](https://img.shields.io/pypi/l/napari-n2v.svg?color=green)](https://github.com/juglab/napari-n2v/raw/main/LICENSE)
[![PyPI](https://img.shields.io/pypi/v/napari-n2v.svg?color=green)](https://pypi.org/project/napari-n2v)
[![Python Version](https://img.shields.io/pypi/pyversions/napari-n2v.svg?color=green)](https://python.org)
[![tests](https://github.com/juglab/napari-n2v/workflows/build/badge.svg)](https://github.com/juglab/napari-n2v/actions)
[![codecov](https://codecov.io/gh/juglab/napari-n2v/branch/main/graph/badge.svg)](https://codecov.io/gh/juglab/napari-n2v)
[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-n2v)](https://napari-hub.org/plugins/napari-n2v)

A self-supervised denoising algorithm now usable by all in napari.

<img src="https://raw.githubusercontent.com/juglab/napari-n2v/master/docs/images/noisy_denoised.png" width="800" />
----------------------------------

## Installation

Check out the [documentation](https://juglab.github.io/napari-n2v/installation.html) for more detailed installation 
instructions. 

You can then start the napari plugin by clicking on "Plugins > napari_n2v > Training",
or run the plugin directly from a [script](scripts/start_plugin.py).



## Quick demo

You can try out a demo by loading the `N2V Demo prediction` plugin and directly clicking on `Predict`. This model was trained using the [N2V2 example](https://juglab.github.io/napari-n2v/examples.html).


<img src="https://raw.githubusercontent.com/juglab/napari-n2v/master/docs/images/demo.gif" width="800" />


## Documentation

Documentation is available on the [project website](https://juglab.github.io/napari-n2v/).


## Contributing and feedback

Contributions are very welcome. Tests can be run with [tox], please ensure
the coverage at least stays the same before you submit a pull request. You can also 
help us improve by [filing an issue] along with a detailed description or contact us
through the [image.sc](https://forum.image.sc/) forum (tag @jdeschamps).


## Citations

### N2V

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. "[Noise2void-learning denoising from single noisy images.](https://ieeexplore.ieee.org/document/8954066)" 
*Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2019.

### structN2V

Coleman Broaddus, et al. "[Removing structured noise with self-supervised blind-spot networks.](https://ieeexplore.ieee.org/document/9098336)" *2020 IEEE 17th 
International Symposium on Biomedical Imaging (ISBI)*. IEEE, 2020.

### N2V2

Eva Hoeck, Tim-Oliver Buchholz, et al. "[N2V2 - Fixing Noise2Void Checkerboard Artifacts with Modified Sampling Strategies and a Tweaked Network Architecture](https://arxiv.org/abs/2211.08512)", arXiv (2022). 

## Acknowledgements

This plugin was developed thanks to the support of the Silicon Valley Community Foundation (SCVF) and the 
Chan-Zuckerberg Initiative (CZI) with the napari Plugin Accelerator grant _2021-240383_.


Distributed under the terms of the [BSD-3] license,
"napari-n2v" is a free and open source software.

[napari]: https://github.com/napari/napari
[Cookiecutter]: https://github.com/audreyr/cookiecutter
[@napari]: https://github.com/napari
[MIT]: http://opensource.org/licenses/MIT
[BSD-3]: http://opensource.org/licenses/BSD-3-Clause
[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt
[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt
[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0
[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt
[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin

[filing an issue]: https://github.com/juglab/napari-n2v/issues

[napari]: https://github.com/napari/napari
[tox]: https://tox.readthedocs.io/en/latest/
[pip]: https://pypi.org/project/pip/
[PyPI]: https://pypi.org/

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/juglab/napari-n2v",
    "name": "napari-n2v",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "",
    "author": "Tom Burke, Joran Deschamps",
    "author_email": "joran.deschamps@fht.org",
    "download_url": "https://files.pythonhosted.org/packages/f3/41/a9d6f8cb36f42a91a234b64b33ae6833556e1b9cdc75488507b6d42657f6/napari-n2v-0.1.1.tar.gz",
    "platform": null,
    "description": "# napari-n2v\n\n[![License](https://img.shields.io/pypi/l/napari-n2v.svg?color=green)](https://github.com/juglab/napari-n2v/raw/main/LICENSE)\n[![PyPI](https://img.shields.io/pypi/v/napari-n2v.svg?color=green)](https://pypi.org/project/napari-n2v)\n[![Python Version](https://img.shields.io/pypi/pyversions/napari-n2v.svg?color=green)](https://python.org)\n[![tests](https://github.com/juglab/napari-n2v/workflows/build/badge.svg)](https://github.com/juglab/napari-n2v/actions)\n[![codecov](https://codecov.io/gh/juglab/napari-n2v/branch/main/graph/badge.svg)](https://codecov.io/gh/juglab/napari-n2v)\n[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-n2v)](https://napari-hub.org/plugins/napari-n2v)\n\nA self-supervised denoising algorithm now usable by all in napari.\n\n<img src=\"https://raw.githubusercontent.com/juglab/napari-n2v/master/docs/images/noisy_denoised.png\" width=\"800\" />\n----------------------------------\n\n## Installation\n\nCheck out the [documentation](https://juglab.github.io/napari-n2v/installation.html) for more detailed installation \ninstructions. \n\nYou can then start the napari plugin by clicking on \"Plugins > napari_n2v > Training\",\nor run the plugin directly from a [script](scripts/start_plugin.py).\n\n\n\n## Quick demo\n\nYou can try out a demo by loading the `N2V Demo prediction` plugin and directly clicking on `Predict`. This model was trained using the [N2V2 example](https://juglab.github.io/napari-n2v/examples.html).\n\n\n<img src=\"https://raw.githubusercontent.com/juglab/napari-n2v/master/docs/images/demo.gif\" width=\"800\" />\n\n\n## Documentation\n\nDocumentation is available on the [project website](https://juglab.github.io/napari-n2v/).\n\n\n## Contributing and feedback\n\nContributions are very welcome. Tests can be run with [tox], please ensure\nthe coverage at least stays the same before you submit a pull request. You can also \nhelp us improve by [filing an issue] along with a detailed description or contact us\nthrough the [image.sc](https://forum.image.sc/) forum (tag @jdeschamps).\n\n\n## Citations\n\n### N2V\n\nAlexander Krull, Tim-Oliver Buchholz, and Florian Jug. \"[Noise2void-learning denoising from single noisy images.](https://ieeexplore.ieee.org/document/8954066)\" \n*Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2019.\n\n### structN2V\n\nColeman Broaddus, et al. \"[Removing structured noise with self-supervised blind-spot networks.](https://ieeexplore.ieee.org/document/9098336)\" *2020 IEEE 17th \nInternational Symposium on Biomedical Imaging (ISBI)*. IEEE, 2020.\n\n### N2V2\n\nEva Hoeck, Tim-Oliver Buchholz, et al. \"[N2V2 - Fixing Noise2Void Checkerboard Artifacts with Modified Sampling Strategies and a Tweaked Network Architecture](https://arxiv.org/abs/2211.08512)\", arXiv (2022). \n\n## Acknowledgements\n\nThis plugin was developed thanks to the support of the Silicon Valley Community Foundation (SCVF) and the \nChan-Zuckerberg Initiative (CZI) with the napari Plugin Accelerator grant _2021-240383_.\n\n\nDistributed under the terms of the [BSD-3] license,\n\"napari-n2v\" is a free and open source software.\n\n[napari]: https://github.com/napari/napari\n[Cookiecutter]: https://github.com/audreyr/cookiecutter\n[@napari]: https://github.com/napari\n[MIT]: http://opensource.org/licenses/MIT\n[BSD-3]: http://opensource.org/licenses/BSD-3-Clause\n[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt\n[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt\n[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0\n[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt\n[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin\n\n[filing an issue]: https://github.com/juglab/napari-n2v/issues\n\n[napari]: https://github.com/napari/napari\n[tox]: https://tox.readthedocs.io/en/latest/\n[pip]: https://pypi.org/project/pip/\n[PyPI]: https://pypi.org/\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "A self-supervised denoising algorithm now usable by all in napari.",
    "version": "0.1.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/juglab/napari-n2v/issues",
        "Documentation": "https://juglab.github.io/napari-n2v/",
        "Homepage": "https://github.com/juglab/napari-n2v",
        "Source Code": "https://github.com/juglab/napari-n2v",
        "User Support": "https://github.com/juglab/napari-n2v/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "423180f80a0486a9c48ebf88a34e5d507b9e548def38937d3d1204758504e614",
                "md5": "dbe8e656cb1146d3075c369f9c360fcd",
                "sha256": "8a413fdd5f9156ca7e58b2db297b2bc2bda0dedbcea18a856815e6e41f9b9a08"
            },
            "downloads": -1,
            "filename": "napari_n2v-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dbe8e656cb1146d3075c369f9c360fcd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 69021,
            "upload_time": "2023-08-29T13:30:35",
            "upload_time_iso_8601": "2023-08-29T13:30:35.749102Z",
            "url": "https://files.pythonhosted.org/packages/42/31/80f80a0486a9c48ebf88a34e5d507b9e548def38937d3d1204758504e614/napari_n2v-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f341a9d6f8cb36f42a91a234b64b33ae6833556e1b9cdc75488507b6d42657f6",
                "md5": "47ccb572690e8d2026a37ecb42db447d",
                "sha256": "1beeafbf66c7f22930534b66ea9783f70b39d1c35a5171fe7910612235d92609"
            },
            "downloads": -1,
            "filename": "napari-n2v-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "47ccb572690e8d2026a37ecb42db447d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 60118,
            "upload_time": "2023-08-29T13:30:37",
            "upload_time_iso_8601": "2023-08-29T13:30:37.290705Z",
            "url": "https://files.pythonhosted.org/packages/f3/41/a9d6f8cb36f42a91a234b64b33ae6833556e1b9cdc75488507b6d42657f6/napari-n2v-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-29 13:30:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "juglab",
    "github_project": "napari-n2v",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "napari-n2v"
}
        
Elapsed time: 0.11247s