napari-superres


Namenapari-superres JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/RoccoDAnt/napari-superres
SummaryFluorescence Fluctuation-based Super Resolution (FF-SRM) Methods
upload_time2023-08-08 11:28:03
maintainer
docs_urlNone
author"Rocco D'Antuono, Adán Guerrero, Raúl Pinto Cámara, Paúl Hernández Herrera, Esley Torres Garcia, Haydee Hernández, Julián Mejía"
requires_python>=3.8
licenseBSD-3-Clause
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # napari-superres

[![License BSD-3](https://img.shields.io/pypi/l/napari-superres.svg?color=green)](https://github.com/RoccoDAnt/napari-superres/blob/main/LICENSE)
[![PyPI](https://img.shields.io/pypi/v/napari-superres.svg?color=green)](https://pypi.org/project/napari-superres)
[![Python Version](https://img.shields.io/pypi/pyversions/napari-superres.svg?color=green)](https://python.org)
[![tests](https://github.com/RoccoDAnt/napari-superres/workflows/tests/badge.svg)](https://github.com/RoccoDAnt/napari-superres/actions)
[![codecov](https://codecov.io/gh/RoccoDAnt/napari-superres/branch/main/graph/badge.svg)](https://codecov.io/gh/RoccoDAnt/napari-superres)
[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/RoccoDAnt/napari-superres)](https://napari-hub.org/plugins/napari-superres)


A collection of super-resolution microscopy FF-SRM methods.

Open-source implementation of methods for Fluorescence Fluctuation based Super Resolution Microscopy (FF-SRM):

Review: [Alva et al., 2022. “Fluorescence Fluctuation-Based Super-Resolution Microscopy: Basic Concepts for an Easy Start.” Journal of Microscopy, August.](https://onlinelibrary.wiley.com/doi/10.1111/jmi.13135)

MSSR article: [Torres-García, E., Pinto-Cámara, R., Linares, A. et al. Extending resolution within a single imaging frame. Nat Commun 13, 7452 (2022).](https://doi.org/10.1038/s41467-022-34693-9)

ESI article: [Idir Yahiatene, Simon Hennig, Marcel Müller, Thomas Huser (2015/2016). "Entropy-based Super-resolution Imaging (ESI): From Disorder to Fine Detail" ACS Photonics 8, 2 (2015)](https://doi.org/10.1021/acsphotonics.5b00307)

SOFI article: [T. Dertinger, R. Colyer, G. Iyer, and J. Enderlein. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). PNAS 52, 106 (2009) ](https://doi.org/10.1073/pnas.0907866106)

SRRF article: [Gustafsson, N., Culley, S., Ashdown, G., D. M. Owen, P. Matos Pereira, and R. Henriques. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7, 12471 (2016)](https://www.nature.com/articles/ncomms12471)

MUSICAL article: [K. Agarwal and R. Machan, Multiple Signal Classification Algorithm for super-resolution fluorescence microscopy, Nature Communications, vol. 7, article id. 13752, (2016)](https://www.nature.com/articles/ncomms13752)



Methods implemented:
- MSSR
- ESI
- SOFI
- SRRF
- MUSICAL
- Split channels


| **Super Resolution Radial Fluctuations (SRRF)**  | **Mean-Shift Super Resolution (MSSR)** | **Entropy-based Super-resolution Imaging (ESI)** |
| --- | --- | --- |
| ![](https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/Fig_7_SRRF_Alva_2022.png) | ![](https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/Fig_2a_MSSR_Garcia_2021.png) | ![](https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/Fig_6_ESI_Alva_2022.png) |
from Fig. 7 of [Alva et al., 2022](https://onlinelibrary.wiley.com/doi/10.1111/jmi.13135) | from Fig. 2 of [García et al., 2021](https://www.biorxiv.org/content/10.1101/2021.10.17.464398v2.full)|  from Fig. 6 of [Alva et al., 2022](https://onlinelibrary.wiley.com/doi/10.1111/jmi.13135)|


Repositories available:
- [ESI](https://github.com/biophotonics-bielefeld/ESI) GitHub repository
- [PySOFI](https://github.com/xiyuyi-at-LLNL/pysofi) GitHub repository
- [MUSICAL](https://sites.google.com/site/uthkrishth/musical) Google site

----------------------------------


This [napari] plugin was generated with [Cookiecutter] using [@napari]'s [cookiecutter-napari-plugin] template.

<!--
Don't miss the full getting started guide to set up your new package:
https://github.com/napari/cookiecutter-napari-plugin#getting-started

and review the napari docs for plugin developers:
https://napari.org/stable/plugins/index.html
-->


## Installation
First install napari viewer (if you haven't):

    conda create -y -n napari-env -c conda-forge python=3.9
    conda activate napari-env
    pip install "napari[all]"

For details check: https://napari.org/stable/




You can install the plugin [graphically](https://github.com/LIBREhub/napari-LatAm-Workshop-2023/blob/napari-superres/docs/day3/napari-superres/napari-superres_installation_guide.pdf).

or install latest development version :

    pip install git+https://github.com/RoccoDAnt/napari-superres.git

You might need to install [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first.

----------------------------------
Examples of use:

| **Original**  | **tMSSR** |
| --- | --- |
| <p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/single-frame-good-exposure.png" width=100% height=100%> </p>| <p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/tmssr-mean-mag2.png" width=48% height=48%> </p>|
| Parameters: | Amplification: 2, Order: 0, PSF FWHM: 6, <br> Interpolation: Bicubic, Statistical integration: CV*sigma |

| **Original**  | **ESI** |
| --- | --- |
| <p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/synt.png" width=40% height=40%> </p> | <p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/ESI.png" width=50% height=50%> </p> |
| Parameters: | image in output: 2, bins: 2, Order: 2 |

| **Original**  | **SOFI** |
| --- | --- |
|<p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/noSOFI.png" width=100% height=100%> </p> | <p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/SOFI.png" width=100% height=100%> </p> |
| Parameters: | Amplification factor: 2, Moment Order: 4, lambda parameter: 1.5, No. Iterations: 20, Window size: 100|

| **Original**  | **SRRF** |
| --- | --- |
|<p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/synt.png" width=50% height=50%> </p> | <p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/SRRF.png" width=50% height=50%> </p>|
| Parameters: | Amplification: 2, Spatial radius: 5, Symmetry Axis: 6, Start frame: 0, End frame: 48|

| **Original**  | **MUSICAL** |
| --- | --- |
| <p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/musical_mean.png" width=70% height=100%> </p> | <p align="center"> <img src="https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/MUSICAL-CardioMyoblast_Mitochondria.png" width=70% height=100%> </p>|
| Parameters: | Emission [nm]: 510 NA: 1.4, Mag: 100, Pizel size: 8000, Threshold: -0.5, Alpha: 4, Subpixels per pixel: 20|
----------------------------------



## Contributing

Contributions are very welcome. Tests can be run with [tox], please ensure
the coverage at least stays the same before you submit a pull request.

## License

Distributed under the terms of the [BSD-3] license,
"napari-superres" is free and open source software

## Issues

If you encounter any problems, please [file an issue] along with a detailed description.

[napari]: https://github.com/napari/napari
[Cookiecutter]: https://github.com/audreyr/cookiecutter
[@napari]: https://github.com/napari
[MIT]: http://opensource.org/licenses/MIT
[BSD-3]: http://opensource.org/licenses/BSD-3-Clause
[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt
[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt
[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0
[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt
[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin

[file an issue]: https://github.com/RoccoDAnt/napari-superres/issues

[napari]: https://github.com/napari/napari
[tox]: https://tox.readthedocs.io/en/latest/
[pip]: https://pypi.org/project/pip/
[PyPI]: https://pypi.org/

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/RoccoDAnt/napari-superres",
    "name": "napari-superres",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "",
    "author": "\"Rocco D'Antuono, Ad\u00e1n Guerrero, Ra\u00fal Pinto C\u00e1mara, Pa\u00fal Hern\u00e1ndez Herrera, Esley Torres Garcia, Haydee Hern\u00e1ndez, Juli\u00e1n Mej\u00eda\"",
    "author_email": "rocco.dantuono@hotmail.it",
    "download_url": "https://files.pythonhosted.org/packages/96/63/aef9bae07a068618a4d79d0b8c170a83fd4af5c115c5c388b4d6968f4391/napari-superres-0.1.1.tar.gz",
    "platform": null,
    "description": "# napari-superres\r\n\r\n[![License BSD-3](https://img.shields.io/pypi/l/napari-superres.svg?color=green)](https://github.com/RoccoDAnt/napari-superres/blob/main/LICENSE)\r\n[![PyPI](https://img.shields.io/pypi/v/napari-superres.svg?color=green)](https://pypi.org/project/napari-superres)\r\n[![Python Version](https://img.shields.io/pypi/pyversions/napari-superres.svg?color=green)](https://python.org)\r\n[![tests](https://github.com/RoccoDAnt/napari-superres/workflows/tests/badge.svg)](https://github.com/RoccoDAnt/napari-superres/actions)\r\n[![codecov](https://codecov.io/gh/RoccoDAnt/napari-superres/branch/main/graph/badge.svg)](https://codecov.io/gh/RoccoDAnt/napari-superres)\r\n[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/RoccoDAnt/napari-superres)](https://napari-hub.org/plugins/napari-superres)\r\n\r\n\r\nA collection of super-resolution microscopy FF-SRM methods.\r\n\r\nOpen-source implementation of methods for Fluorescence Fluctuation based Super Resolution Microscopy (FF-SRM):\r\n\r\nReview: [Alva et al., 2022. \u201cFluorescence Fluctuation-Based Super-Resolution Microscopy: Basic Concepts for an Easy Start.\u201d Journal of Microscopy, August.](https://onlinelibrary.wiley.com/doi/10.1111/jmi.13135)\r\n\r\nMSSR article: [Torres-Garc\u00eda, E., Pinto-C\u00e1mara, R., Linares, A. et al. Extending resolution within a single imaging frame. Nat Commun 13, 7452 (2022).](https://doi.org/10.1038/s41467-022-34693-9)\r\n\r\nESI article: [Idir Yahiatene, Simon Hennig, Marcel M\u00fcller, Thomas Huser (2015/2016). \"Entropy-based Super-resolution Imaging (ESI): From Disorder to Fine Detail\" ACS Photonics 8, 2 (2015)](https://doi.org/10.1021/acsphotonics.5b00307)\r\n\r\nSOFI article: [T. Dertinger, R. Colyer, G. Iyer, and J. Enderlein. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). PNAS 52, 106 (2009) ](https://doi.org/10.1073/pnas.0907866106)\r\n\r\nSRRF article: [Gustafsson, N., Culley, S., Ashdown, G., D. M. Owen, P. Matos Pereira, and R. Henriques. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7, 12471 (2016)](https://www.nature.com/articles/ncomms12471)\r\n\r\nMUSICAL article: [K. Agarwal and R. Machan, Multiple Signal Classification Algorithm for super-resolution fluorescence microscopy, Nature Communications, vol. 7, article id. 13752, (2016)](https://www.nature.com/articles/ncomms13752)\r\n\r\n\r\n\r\nMethods implemented:\r\n- MSSR\r\n- ESI\r\n- SOFI\r\n- SRRF\r\n- MUSICAL\r\n- Split channels\r\n\r\n\r\n| **Super Resolution Radial Fluctuations (SRRF)**  | **Mean-Shift Super Resolution (MSSR)** | **Entropy-based Super-resolution Imaging (ESI)** |\r\n| --- | --- | --- |\r\n| ![](https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/Fig_7_SRRF_Alva_2022.png) | ![](https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/Fig_2a_MSSR_Garcia_2021.png) | ![](https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/Fig_6_ESI_Alva_2022.png) |\r\nfrom Fig. 7 of [Alva et al., 2022](https://onlinelibrary.wiley.com/doi/10.1111/jmi.13135) | from Fig. 2 of [Garc\u00eda et al., 2021](https://www.biorxiv.org/content/10.1101/2021.10.17.464398v2.full)|  from Fig. 6 of [Alva et al., 2022](https://onlinelibrary.wiley.com/doi/10.1111/jmi.13135)|\r\n\r\n\r\nRepositories available:\r\n- [ESI](https://github.com/biophotonics-bielefeld/ESI) GitHub repository\r\n- [PySOFI](https://github.com/xiyuyi-at-LLNL/pysofi) GitHub repository\r\n- [MUSICAL](https://sites.google.com/site/uthkrishth/musical) Google site\r\n\r\n----------------------------------\r\n\r\n\r\nThis [napari] plugin was generated with [Cookiecutter] using [@napari]'s [cookiecutter-napari-plugin] template.\r\n\r\n<!--\r\nDon't miss the full getting started guide to set up your new package:\r\nhttps://github.com/napari/cookiecutter-napari-plugin#getting-started\r\n\r\nand review the napari docs for plugin developers:\r\nhttps://napari.org/stable/plugins/index.html\r\n-->\r\n\r\n\r\n## Installation\r\nFirst install napari viewer (if you haven't):\r\n\r\n    conda create -y -n napari-env -c conda-forge python=3.9\r\n    conda activate napari-env\r\n    pip install \"napari[all]\"\r\n\r\nFor details check: https://napari.org/stable/\r\n\r\n\r\n\r\n\r\nYou can install the plugin [graphically](https://github.com/LIBREhub/napari-LatAm-Workshop-2023/blob/napari-superres/docs/day3/napari-superres/napari-superres_installation_guide.pdf).\r\n\r\nor install latest development version :\r\n\r\n    pip install git+https://github.com/RoccoDAnt/napari-superres.git\r\n\r\nYou might need to install [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first.\r\n\r\n----------------------------------\r\nExamples of use:\r\n\r\n| **Original**  | **tMSSR** |\r\n| --- | --- |\r\n| <p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/single-frame-good-exposure.png\" width=100% height=100%> </p>| <p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/tmssr-mean-mag2.png\" width=48% height=48%> </p>|\r\n| Parameters: | Amplification: 2, Order: 0, PSF FWHM: 6, <br> Interpolation: Bicubic, Statistical integration: CV*sigma |\r\n\r\n| **Original**  | **ESI** |\r\n| --- | --- |\r\n| <p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/synt.png\" width=40% height=40%> </p> | <p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/ESI.png\" width=50% height=50%> </p> |\r\n| Parameters: | image in output: 2, bins: 2, Order: 2 |\r\n\r\n| **Original**  | **SOFI** |\r\n| --- | --- |\r\n|<p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/noSOFI.png\" width=100% height=100%> </p> | <p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/SOFI.png\" width=100% height=100%> </p> |\r\n| Parameters: | Amplification factor: 2, Moment Order: 4, lambda parameter: 1.5, No. Iterations: 20, Window size: 100|\r\n\r\n| **Original**  | **SRRF** |\r\n| --- | --- |\r\n|<p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/synt.png\" width=50% height=50%> </p> | <p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/SRRF.png\" width=50% height=50%> </p>|\r\n| Parameters: | Amplification: 2, Spatial radius: 5, Symmetry Axis: 6, Start frame: 0, End frame: 48|\r\n\r\n| **Original**  | **MUSICAL** |\r\n| --- | --- |\r\n| <p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/musical_mean.png\" width=70% height=100%> </p> | <p align=\"center\"> <img src=\"https://raw.githubusercontent.com/RoccoDAnt/napari-superres/main/docs/MUSICAL-CardioMyoblast_Mitochondria.png\" width=70% height=100%> </p>|\r\n| Parameters: | Emission [nm]: 510 NA: 1.4, Mag: 100, Pizel size: 8000, Threshold: -0.5, Alpha: 4, Subpixels per pixel: 20|\r\n----------------------------------\r\n\r\n\r\n\r\n## Contributing\r\n\r\nContributions are very welcome. Tests can be run with [tox], please ensure\r\nthe coverage at least stays the same before you submit a pull request.\r\n\r\n## License\r\n\r\nDistributed under the terms of the [BSD-3] license,\r\n\"napari-superres\" is free and open source software\r\n\r\n## Issues\r\n\r\nIf you encounter any problems, please [file an issue] along with a detailed description.\r\n\r\n[napari]: https://github.com/napari/napari\r\n[Cookiecutter]: https://github.com/audreyr/cookiecutter\r\n[@napari]: https://github.com/napari\r\n[MIT]: http://opensource.org/licenses/MIT\r\n[BSD-3]: http://opensource.org/licenses/BSD-3-Clause\r\n[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt\r\n[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt\r\n[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0\r\n[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt\r\n[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin\r\n\r\n[file an issue]: https://github.com/RoccoDAnt/napari-superres/issues\r\n\r\n[napari]: https://github.com/napari/napari\r\n[tox]: https://tox.readthedocs.io/en/latest/\r\n[pip]: https://pypi.org/project/pip/\r\n[PyPI]: https://pypi.org/\r\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Fluorescence Fluctuation-based Super Resolution (FF-SRM) Methods",
    "version": "0.1.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/RoccoDAnt/napari-superres/issues",
        "Documentation": "https://github.com/RoccoDAnt/napari-superres#README.md",
        "Homepage": "https://github.com/RoccoDAnt/napari-superres",
        "Source Code": "https://github.com/RoccoDAnt/napari-superres",
        "User Support": "https://github.com/RoccoDAnt/napari-superres/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9663aef9bae07a068618a4d79d0b8c170a83fd4af5c115c5c388b4d6968f4391",
                "md5": "2dcdd487c63886bb360821c364d5ef26",
                "sha256": "d38f98572daac58331ac2dedd4a3e0cd0ad2c4743ac036fd9a9ab12c79f6d2ab"
            },
            "downloads": -1,
            "filename": "napari-superres-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "2dcdd487c63886bb360821c364d5ef26",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4733669,
            "upload_time": "2023-08-08T11:28:03",
            "upload_time_iso_8601": "2023-08-08T11:28:03.822276Z",
            "url": "https://files.pythonhosted.org/packages/96/63/aef9bae07a068618a4d79d0b8c170a83fd4af5c115c5c388b4d6968f4391/napari-superres-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-08 11:28:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "RoccoDAnt",
    "github_project": "napari-superres",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "napari-superres"
}
        
Elapsed time: 0.24079s