Intel® oneAPI Math Kernel Library (Intel® oneMKL) is a computing math library of highly optimized, extensively threaded routines for applications that require maximum performance. This package provides C and Data Parallel C++ (DPC++) programming language interfaces. Intel MKL C language interfaces can be called from applications written in either C or C++, as well as in any other language that can reference a C interface. Use it to optimize code for current and future generations of Intel® CPUs and GPUs.
Raw data
{
"_id": null,
"home_page": "https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html",
"name": "onemkl-sycl-lapack",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Intel Corporation",
"author_email": "scripting@intel.com",
"download_url": null,
"platform": null,
"description": "Intel\u00ae oneAPI Math Kernel Library (Intel\u00ae oneMKL) is a computing math library of highly optimized, extensively threaded routines for applications that require maximum performance. This package provides C and Data Parallel C++ (DPC++) programming language interfaces. Intel MKL C language interfaces can be called from applications written in either C or C++, as well as in any other language that can reference a C interface. Use it to optimize code for current and future generations of Intel\u00ae CPUs and GPUs.\r\n\r\n",
"bugtrack_url": null,
"license": "Intel Simplified Software License",
"summary": "Intel\u00ae oneAPI Math Kernel Library",
"version": "2025.0.1",
"project_urls": {
"Homepage": "https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "13b489b0cecb5ce0e013a0d1da5895a7dcada57f294fc7cc3a0dee52bfc620f4",
"md5": "f0263224ff9e0c095a225765fd2526c0",
"sha256": "615e637c484f06e1df07f2ab94ef8701054cbf3b6e9816f192c3142ab3db7d28"
},
"downloads": -1,
"filename": "onemkl_sycl_lapack-2025.0.1-py2.py3-none-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "f0263224ff9e0c095a225765fd2526c0",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 11414994,
"upload_time": "2024-11-19T15:38:47",
"upload_time_iso_8601": "2024-11-19T15:38:47.162143Z",
"url": "https://files.pythonhosted.org/packages/13/b4/89b0cecb5ce0e013a0d1da5895a7dcada57f294fc7cc3a0dee52bfc620f4/onemkl_sycl_lapack-2025.0.1-py2.py3-none-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e0fe4300dcdb50c359e506207da5598707e9423f2a2192b0ae29420522d47690",
"md5": "1f902d682e5eb7282fc46b7e2f7f1dfe",
"sha256": "714c7c9bfc172fc3fd25e2df9a5d719de1e36e01b677fabc4f8cec3fc1ac0448"
},
"downloads": -1,
"filename": "onemkl_sycl_lapack-2025.0.1-py2.py3-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "1f902d682e5eb7282fc46b7e2f7f1dfe",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 9829812,
"upload_time": "2024-11-19T15:36:35",
"upload_time_iso_8601": "2024-11-19T15:36:35.378370Z",
"url": "https://files.pythonhosted.org/packages/e0/fe/4300dcdb50c359e506207da5598707e9423f2a2192b0ae29420522d47690/onemkl_sycl_lapack-2025.0.1-py2.py3-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-19 15:38:47",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "onemkl-sycl-lapack"
}