orion-data-analyst


Nameorion-data-analyst JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://github.com/gavrielhan/orion-data-analyst
SummaryAI-powered BigQuery data analysis agent with natural language interface
upload_time2025-11-06 12:32:44
maintainerNone
docs_urlNone
authorGavriel Hannuna
requires_python>=3.8
licenseMIT
keywords data-analysis bigquery ai nlp sql gemini analytics
VCS
bugtrack_url
requirements langgraph langchain google-cloud-bigquery google-generativeai db-dtypes pandas python-dotenv pydantic typing-extensions matplotlib seaborn
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 🌟 Orion - AI-Powered Data Analysis Agent

[![PyPI version](https://badge.fury.io/py/orion-data-analyst.svg?v=1.1.0)](https://pypi.org/project/orion-data-analyst/)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![LangGraph](https://img.shields.io/badge/🦜_LangGraph-0.2+-green.svg)](https://langchain-ai.github.io/langgraph/)
[![LangChain](https://img.shields.io/badge/🦜_LangChain-0.3+-green.svg)](https://www.langchain.com/)
[![Google Cloud](https://img.shields.io/badge/Google_Cloud-BigQuery-4285F4?logo=google-cloud)](https://cloud.google.com/bigquery)
[![Gemini AI](https://img.shields.io/badge/Gemini_AI-2.0_Flash-8E75B2?logo=google)](https://ai.google.dev/)
[![Powered by AI](https://img.shields.io/badge/Powered_by-AI-orange.svg)](https://github.com/gavrielhan/orion-data-analyst)

An intelligent data analysis agent that transforms natural language questions into SQL queries, executes them on BigQuery, performs statistical analysis, and generates actionable business insights.

🔗 **GitHub**: https://github.com/gavrielhan/orion-data-analyst  
📦 **PyPI**: https://pypi.org/project/orion-data-analyst/

---

## ✨ What is Orion?

![Orion Interface](assets/orion_face.png)

Orion is your AI business analyst that:
- **Understands natural language** - Ask questions in plain English
- **Generates smart SQL** - Powered by Google Gemini AI
- **Analyzes data automatically** - Statistical analysis, trends, segmentation
- **Provides insights** - Actionable recommendations with business context
- **Creates visualizations** - Charts saved automatically
- **Self-heals errors** - Automatically fixes and retries failed queries
- **Remembers conversations** - Handles follow-up questions with context

Built with **LangGraph** for modular AI reasoning and **Google BigQuery** for data warehousing.

---

## 🚀 Quick Start

### Installation

**Option 1: Install from PyPI (Recommended)**
```bash
pip install orion-data-analyst
```

**Option 2: Install from Source**
```bash
git clone https://github.com/gavrielhan/orion-data-analyst.git
cd orion-data-analyst
pip install -e .
```

### Setup

1. **Get API Keys** (see [GETTING_KEYS.md](GETTING_KEYS.md)):
   - Google Cloud Project ID
   - Google Cloud service account JSON key
   - Gemini API key from [Google AI Studio](https://makersuite.google.com/app/apikey)

2. **Configure `.env` file**:
```bash
# Copy example
cp .env.example .env

# Edit with your credentials
GOOGLE_CLOUD_PROJECT=your-project-id
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
GEMINI_API_KEY=your-gemini-api-key
```

3. **Run Orion**:
```bash
orion
```

---

## 💡 Usage Examples

### Basic Queries
```
You: show me top 10 products by revenue
Orion: [Generates SQL, executes, analyzes, and displays ranked results]

You: what are the sales trends for the last 6 months?
Orion: [Creates time-series analysis with month-over-month growth]

You: segment customers by purchase behavior
Orion: [Performs customer segmentation and analysis]
```

### Follow-up Questions
```
You: show top customers
Orion: [Displays ranked customer list]

You: show the same for the last quarter
Orion: [Uses conversation context to apply date filter]

You: break that down by region
Orion: [Further segments the previous results]
```

### Visualizations & Exports
```
You: create a bar chart of sales by category
Orion: [Generates chart and saves to ~/orion_results/]

You: save this as csv
Orion: [Exports results to ~/orion_results/results_TIMESTAMP.csv]
```

### Meta-Questions (Instant Responses)
```
You: what can you do?
Orion: [Explains capabilities without querying database]

You: which datasets can you query?
Orion: [Lists available tables and schemas]
```

---

## 🏗️ Architecture

Orion uses a **modular node-based architecture** powered by LangGraph:

### High-Level Architecture

![High-Level Schema](assets/high_level_schema.png)

### Detailed Graph Schema

![Graph Schema](assets/graph_schema.png)


See [ARCHITECTURE.md](ARCHITECTURE.md) for detailed component descriptions.

---

## 🎯 Key Features

### 🤖 Intelligent SQL Generation
- Natural language to SQL using Google Gemini
- Automatic schema context injection
- Self-healing with error feedback loops (max 3 retries)
- Handles complex JOINs across multiple tables

### 🛡️ Safety & Validation
- Blocks malicious queries (DROP, DELETE, etc.)
- BigQuery cost estimation before execution
- Query syntax validation with dry-run
- Row limits to prevent runaway queries
- Human-in-the-loop approval for expensive operations

### 📊 Advanced Analytics
- **Ranking**: Top N analysis with contribution %
- **Trends**: Time-series with growth rates
- **Segmentation**: Group-by analysis
- **RFM Analysis**: Customer segmentation (Recency, Frequency, Monetary)
- **Anomaly Detection**: Outlier identification
- **Comparative Analysis**: Period-over-period comparison

### 💬 Conversation Memory
- Remembers last 5 interactions
- Context-aware follow-up questions
- Session save/load for long conversations
- Automatic context pruning for token efficiency

### 📈 Visualizations
- **Chart Types**: Bar, Line, Pie, Scatter, Box, Candle
- Auto-saved to `~/orion_results/` (configurable)
- Smart chart type selection based on data
- CSV export for further analysis

### ⚡ Performance Optimizations
- **Query Caching**: Instant responses for repeated queries (1-hour TTL)
- **Schema Caching**: Reduces API calls to BigQuery metadata
- **Rate Limiting**: Token bucket algorithm for Gemini API
- **Streaming**: Large result handling

### 🎨 Polished UX
- Colored terminal output with formatted text
- Progress indicators at each step
- Helpful error messages with action links
- Startup validation with setup guidance

---

## 🗂️ Project Structure

```
orion-data-analyst/
├── assets/                        # Images and diagrams
│   ├── orion_face.png            # Main interface screenshot
│   ├── high_level_schema.png     # High-level architecture diagram
│   └── graph_schema.png          # Detailed graph flow diagram
├── src/
│   ├── __init__.py
│   ├── cli.py                    # CLI interface with session management
│   ├── config.py                 # Configuration loader (.env)
│   ├── agent/
│   │   ├── __init__.py
│   │   ├── graph.py              # LangGraph workflow orchestration
│   │   ├── nodes.py              # All 10 agent nodes
│   │   └── state.py              # Centralized AgentState (TypedDict)
│   └── utils/
│       ├── __init__.py
│       ├── cache.py              # Query result caching
│       ├── formatter.py          # ANSI terminal formatting
│       ├── rate_limiter.py       # API rate limiting
│       ├── schema_fetcher.py     # BigQuery schema utilities
│       └── visualizer.py         # Chart generation (matplotlib/seaborn)
├── tests/                         # Test suite
│   ├── __init__.py
│   ├── test_nodes.py             # Node unit tests
│   └── test_graph.py             # Graph integration tests
├── .env.example                  # Configuration template
├── requirements.txt              # Dependencies
├── setup.py                      # PyPI packaging
├── pyproject.toml                # Modern Python packaging
├── install.sh                    # One-line installer
├── ARCHITECTURE.md               # Detailed architecture docs
├── GETTING_KEYS.md               # API key setup guide
└── README.md                     # This file
```

---

## ⚙️ Configuration

All configuration via `.env` file:

```bash
# REQUIRED
GOOGLE_CLOUD_PROJECT=your-project-id
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
GEMINI_API_KEY=your-gemini-api-key

# OPTIONAL
GEMINI_MODEL=gemini-2.0-flash-exp              # Choose Gemini model
ORION_OUTPUT_DIR=~/orion_results               # Results directory
BIGQUERY_DATASET=bigquery-public-data.thelook_ecommerce
MAX_QUERY_ROWS=10000                           # Row limit
QUERY_TIMEOUT=300                              # Timeout (seconds)
```

---

## 📊 Dataset

Uses Google BigQuery's public e-commerce dataset:
- **Dataset**: `bigquery-public-data.thelook_ecommerce`
- **Tables**: `orders`, `order_items`, `products`, `users`
- **Schema**: Automatically loaded with column descriptions

---

## 🔧 Development

### Run from Source
```bash
git clone https://github.com/gavrielhan/orion-data-analyst.git
cd orion-data-analyst
pip install -e .
orion
```
---

## 📝 Commands

In the Orion CLI:
- `exit` / `quit` / `q` - Exit Orion
- `save session` - Save conversation history
- `load session [path]` - Load previous session
- `clear cache` - Clear query cache

---

## 🛠️ Technology Stack

| Component | Technology |
|-----------|-----------|
| **AI Orchestration** | LangGraph |
| **LLM Integration** | LangChain |
| **AI Model** | Google Gemini 2.0 Flash |
| **Data Warehouse** | Google BigQuery |
| **Data Processing** | pandas |
| **Visualization** | matplotlib, seaborn |
| **State Management** | TypedDict (Python) |
| **Configuration** | python-dotenv |
| **Packaging** | setuptools, PyPI |

---

## 📜 License

MIT License - see [LICENSE](LICENSE) file for details.

---

## 🤝 Contributing

Contributions welcome! Please:
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Submit a pull request

---

## 🙏 Acknowledgments

- Built with [LangGraph](https://github.com/langchain-ai/langgraph) by LangChain
- Powered by [Google Gemini](https://ai.google.dev/)
- Data from [BigQuery Public Datasets](https://cloud.google.com/bigquery/public-data)

---

**Made with ❤️ by Gavriel Hannuna**

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/gavrielhan/orion-data-analyst",
    "name": "orion-data-analyst",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "data-analysis, bigquery, ai, nlp, sql, gemini, analytics",
    "author": "Gavriel Hannuna",
    "author_email": "Gavriel Hannuna <gavriel.hannuna@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ea/87/5c55d8f2acfb84f57c72be7f70c37c1457b0da41c66f29bd504a28ccfd3f/orion_data_analyst-1.1.2.tar.gz",
    "platform": null,
    "description": "# \ud83c\udf1f Orion - AI-Powered Data Analysis Agent\n\n[![PyPI version](https://badge.fury.io/py/orion-data-analyst.svg?v=1.1.0)](https://pypi.org/project/orion-data-analyst/)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![LangGraph](https://img.shields.io/badge/\ud83e\udd9c_LangGraph-0.2+-green.svg)](https://langchain-ai.github.io/langgraph/)\n[![LangChain](https://img.shields.io/badge/\ud83e\udd9c_LangChain-0.3+-green.svg)](https://www.langchain.com/)\n[![Google Cloud](https://img.shields.io/badge/Google_Cloud-BigQuery-4285F4?logo=google-cloud)](https://cloud.google.com/bigquery)\n[![Gemini AI](https://img.shields.io/badge/Gemini_AI-2.0_Flash-8E75B2?logo=google)](https://ai.google.dev/)\n[![Powered by AI](https://img.shields.io/badge/Powered_by-AI-orange.svg)](https://github.com/gavrielhan/orion-data-analyst)\n\nAn intelligent data analysis agent that transforms natural language questions into SQL queries, executes them on BigQuery, performs statistical analysis, and generates actionable business insights.\n\n\ud83d\udd17 **GitHub**: https://github.com/gavrielhan/orion-data-analyst  \n\ud83d\udce6 **PyPI**: https://pypi.org/project/orion-data-analyst/\n\n---\n\n## \u2728 What is Orion?\n\n![Orion Interface](assets/orion_face.png)\n\nOrion is your AI business analyst that:\n- **Understands natural language** - Ask questions in plain English\n- **Generates smart SQL** - Powered by Google Gemini AI\n- **Analyzes data automatically** - Statistical analysis, trends, segmentation\n- **Provides insights** - Actionable recommendations with business context\n- **Creates visualizations** - Charts saved automatically\n- **Self-heals errors** - Automatically fixes and retries failed queries\n- **Remembers conversations** - Handles follow-up questions with context\n\nBuilt with **LangGraph** for modular AI reasoning and **Google BigQuery** for data warehousing.\n\n---\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n\n**Option 1: Install from PyPI (Recommended)**\n```bash\npip install orion-data-analyst\n```\n\n**Option 2: Install from Source**\n```bash\ngit clone https://github.com/gavrielhan/orion-data-analyst.git\ncd orion-data-analyst\npip install -e .\n```\n\n### Setup\n\n1. **Get API Keys** (see [GETTING_KEYS.md](GETTING_KEYS.md)):\n   - Google Cloud Project ID\n   - Google Cloud service account JSON key\n   - Gemini API key from [Google AI Studio](https://makersuite.google.com/app/apikey)\n\n2. **Configure `.env` file**:\n```bash\n# Copy example\ncp .env.example .env\n\n# Edit with your credentials\nGOOGLE_CLOUD_PROJECT=your-project-id\nGOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json\nGEMINI_API_KEY=your-gemini-api-key\n```\n\n3. **Run Orion**:\n```bash\norion\n```\n\n---\n\n## \ud83d\udca1 Usage Examples\n\n### Basic Queries\n```\nYou: show me top 10 products by revenue\nOrion: [Generates SQL, executes, analyzes, and displays ranked results]\n\nYou: what are the sales trends for the last 6 months?\nOrion: [Creates time-series analysis with month-over-month growth]\n\nYou: segment customers by purchase behavior\nOrion: [Performs customer segmentation and analysis]\n```\n\n### Follow-up Questions\n```\nYou: show top customers\nOrion: [Displays ranked customer list]\n\nYou: show the same for the last quarter\nOrion: [Uses conversation context to apply date filter]\n\nYou: break that down by region\nOrion: [Further segments the previous results]\n```\n\n### Visualizations & Exports\n```\nYou: create a bar chart of sales by category\nOrion: [Generates chart and saves to ~/orion_results/]\n\nYou: save this as csv\nOrion: [Exports results to ~/orion_results/results_TIMESTAMP.csv]\n```\n\n### Meta-Questions (Instant Responses)\n```\nYou: what can you do?\nOrion: [Explains capabilities without querying database]\n\nYou: which datasets can you query?\nOrion: [Lists available tables and schemas]\n```\n\n---\n\n## \ud83c\udfd7\ufe0f Architecture\n\nOrion uses a **modular node-based architecture** powered by LangGraph:\n\n### High-Level Architecture\n\n![High-Level Schema](assets/high_level_schema.png)\n\n### Detailed Graph Schema\n\n![Graph Schema](assets/graph_schema.png)\n\n\nSee [ARCHITECTURE.md](ARCHITECTURE.md) for detailed component descriptions.\n\n---\n\n## \ud83c\udfaf Key Features\n\n### \ud83e\udd16 Intelligent SQL Generation\n- Natural language to SQL using Google Gemini\n- Automatic schema context injection\n- Self-healing with error feedback loops (max 3 retries)\n- Handles complex JOINs across multiple tables\n\n### \ud83d\udee1\ufe0f Safety & Validation\n- Blocks malicious queries (DROP, DELETE, etc.)\n- BigQuery cost estimation before execution\n- Query syntax validation with dry-run\n- Row limits to prevent runaway queries\n- Human-in-the-loop approval for expensive operations\n\n### \ud83d\udcca Advanced Analytics\n- **Ranking**: Top N analysis with contribution %\n- **Trends**: Time-series with growth rates\n- **Segmentation**: Group-by analysis\n- **RFM Analysis**: Customer segmentation (Recency, Frequency, Monetary)\n- **Anomaly Detection**: Outlier identification\n- **Comparative Analysis**: Period-over-period comparison\n\n### \ud83d\udcac Conversation Memory\n- Remembers last 5 interactions\n- Context-aware follow-up questions\n- Session save/load for long conversations\n- Automatic context pruning for token efficiency\n\n### \ud83d\udcc8 Visualizations\n- **Chart Types**: Bar, Line, Pie, Scatter, Box, Candle\n- Auto-saved to `~/orion_results/` (configurable)\n- Smart chart type selection based on data\n- CSV export for further analysis\n\n### \u26a1 Performance Optimizations\n- **Query Caching**: Instant responses for repeated queries (1-hour TTL)\n- **Schema Caching**: Reduces API calls to BigQuery metadata\n- **Rate Limiting**: Token bucket algorithm for Gemini API\n- **Streaming**: Large result handling\n\n### \ud83c\udfa8 Polished UX\n- Colored terminal output with formatted text\n- Progress indicators at each step\n- Helpful error messages with action links\n- Startup validation with setup guidance\n\n---\n\n## \ud83d\uddc2\ufe0f Project Structure\n\n```\norion-data-analyst/\n\u251c\u2500\u2500 assets/                        # Images and diagrams\n\u2502   \u251c\u2500\u2500 orion_face.png            # Main interface screenshot\n\u2502   \u251c\u2500\u2500 high_level_schema.png     # High-level architecture diagram\n\u2502   \u2514\u2500\u2500 graph_schema.png          # Detailed graph flow diagram\n\u251c\u2500\u2500 src/\n\u2502   \u251c\u2500\u2500 __init__.py\n\u2502   \u251c\u2500\u2500 cli.py                    # CLI interface with session management\n\u2502   \u251c\u2500\u2500 config.py                 # Configuration loader (.env)\n\u2502   \u251c\u2500\u2500 agent/\n\u2502   \u2502   \u251c\u2500\u2500 __init__.py\n\u2502   \u2502   \u251c\u2500\u2500 graph.py              # LangGraph workflow orchestration\n\u2502   \u2502   \u251c\u2500\u2500 nodes.py              # All 10 agent nodes\n\u2502   \u2502   \u2514\u2500\u2500 state.py              # Centralized AgentState (TypedDict)\n\u2502   \u2514\u2500\u2500 utils/\n\u2502       \u251c\u2500\u2500 __init__.py\n\u2502       \u251c\u2500\u2500 cache.py              # Query result caching\n\u2502       \u251c\u2500\u2500 formatter.py          # ANSI terminal formatting\n\u2502       \u251c\u2500\u2500 rate_limiter.py       # API rate limiting\n\u2502       \u251c\u2500\u2500 schema_fetcher.py     # BigQuery schema utilities\n\u2502       \u2514\u2500\u2500 visualizer.py         # Chart generation (matplotlib/seaborn)\n\u251c\u2500\u2500 tests/                         # Test suite\n\u2502   \u251c\u2500\u2500 __init__.py\n\u2502   \u251c\u2500\u2500 test_nodes.py             # Node unit tests\n\u2502   \u2514\u2500\u2500 test_graph.py             # Graph integration tests\n\u251c\u2500\u2500 .env.example                  # Configuration template\n\u251c\u2500\u2500 requirements.txt              # Dependencies\n\u251c\u2500\u2500 setup.py                      # PyPI packaging\n\u251c\u2500\u2500 pyproject.toml                # Modern Python packaging\n\u251c\u2500\u2500 install.sh                    # One-line installer\n\u251c\u2500\u2500 ARCHITECTURE.md               # Detailed architecture docs\n\u251c\u2500\u2500 GETTING_KEYS.md               # API key setup guide\n\u2514\u2500\u2500 README.md                     # This file\n```\n\n---\n\n## \u2699\ufe0f Configuration\n\nAll configuration via `.env` file:\n\n```bash\n# REQUIRED\nGOOGLE_CLOUD_PROJECT=your-project-id\nGOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json\nGEMINI_API_KEY=your-gemini-api-key\n\n# OPTIONAL\nGEMINI_MODEL=gemini-2.0-flash-exp              # Choose Gemini model\nORION_OUTPUT_DIR=~/orion_results               # Results directory\nBIGQUERY_DATASET=bigquery-public-data.thelook_ecommerce\nMAX_QUERY_ROWS=10000                           # Row limit\nQUERY_TIMEOUT=300                              # Timeout (seconds)\n```\n\n---\n\n## \ud83d\udcca Dataset\n\nUses Google BigQuery's public e-commerce dataset:\n- **Dataset**: `bigquery-public-data.thelook_ecommerce`\n- **Tables**: `orders`, `order_items`, `products`, `users`\n- **Schema**: Automatically loaded with column descriptions\n\n---\n\n## \ud83d\udd27 Development\n\n### Run from Source\n```bash\ngit clone https://github.com/gavrielhan/orion-data-analyst.git\ncd orion-data-analyst\npip install -e .\norion\n```\n---\n\n## \ud83d\udcdd Commands\n\nIn the Orion CLI:\n- `exit` / `quit` / `q` - Exit Orion\n- `save session` - Save conversation history\n- `load session [path]` - Load previous session\n- `clear cache` - Clear query cache\n\n---\n\n## \ud83d\udee0\ufe0f Technology Stack\n\n| Component | Technology |\n|-----------|-----------|\n| **AI Orchestration** | LangGraph |\n| **LLM Integration** | LangChain |\n| **AI Model** | Google Gemini 2.0 Flash |\n| **Data Warehouse** | Google BigQuery |\n| **Data Processing** | pandas |\n| **Visualization** | matplotlib, seaborn |\n| **State Management** | TypedDict (Python) |\n| **Configuration** | python-dotenv |\n| **Packaging** | setuptools, PyPI |\n\n---\n\n## \ud83d\udcdc License\n\nMIT License - see [LICENSE](LICENSE) file for details.\n\n---\n\n## \ud83e\udd1d Contributing\n\nContributions welcome! Please:\n1. Fork the repository\n2. Create a feature branch\n3. Make your changes\n4. Submit a pull request\n\n---\n\n## \ud83d\ude4f Acknowledgments\n\n- Built with [LangGraph](https://github.com/langchain-ai/langgraph) by LangChain\n- Powered by [Google Gemini](https://ai.google.dev/)\n- Data from [BigQuery Public Datasets](https://cloud.google.com/bigquery/public-data)\n\n---\n\n**Made with \u2764\ufe0f by Gavriel Hannuna**\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "AI-powered BigQuery data analysis agent with natural language interface",
    "version": "1.1.2",
    "project_urls": {
        "Bug Reports": "https://github.com/gavrielhan/orion-data-analyst/issues",
        "Documentation": "https://github.com/gavrielhan/orion-data-analyst#readme",
        "Homepage": "https://github.com/gavrielhan/orion-data-analyst",
        "Source": "https://github.com/gavrielhan/orion-data-analyst"
    },
    "split_keywords": [
        "data-analysis",
        " bigquery",
        " ai",
        " nlp",
        " sql",
        " gemini",
        " analytics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "483a2304d84192811690d5d277fc26d57c2db6d39ebf6faf143d5761cc0a7964",
                "md5": "b5b2bfb07b0d3f47e1fe88cad0d72854",
                "sha256": "9c9533d3ff39f72ecaf6093c0e45ff1d52b26e3342b75dbc5998ccbd02fb1903"
            },
            "downloads": -1,
            "filename": "orion_data_analyst-1.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b5b2bfb07b0d3f47e1fe88cad0d72854",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 49907,
            "upload_time": "2025-11-06T12:32:42",
            "upload_time_iso_8601": "2025-11-06T12:32:42.543393Z",
            "url": "https://files.pythonhosted.org/packages/48/3a/2304d84192811690d5d277fc26d57c2db6d39ebf6faf143d5761cc0a7964/orion_data_analyst-1.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ea875c55d8f2acfb84f57c72be7f70c37c1457b0da41c66f29bd504a28ccfd3f",
                "md5": "339917d824a7a3a222d1f49c394b4eb5",
                "sha256": "3cc773d4ae1a98e483d68e8544a1cf1f0dec80e95937a36d60baf67d78e09902"
            },
            "downloads": -1,
            "filename": "orion_data_analyst-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "339917d824a7a3a222d1f49c394b4eb5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 453341,
            "upload_time": "2025-11-06T12:32:44",
            "upload_time_iso_8601": "2025-11-06T12:32:44.402895Z",
            "url": "https://files.pythonhosted.org/packages/ea/87/5c55d8f2acfb84f57c72be7f70c37c1457b0da41c66f29bd504a28ccfd3f/orion_data_analyst-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-11-06 12:32:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gavrielhan",
    "github_project": "orion-data-analyst",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "langgraph",
            "specs": [
                [
                    "==",
                    "0.2.45"
                ]
            ]
        },
        {
            "name": "langchain",
            "specs": [
                [
                    "==",
                    "0.3.0"
                ]
            ]
        },
        {
            "name": "google-cloud-bigquery",
            "specs": [
                [
                    "==",
                    "3.25.0"
                ]
            ]
        },
        {
            "name": "google-generativeai",
            "specs": []
        },
        {
            "name": "db-dtypes",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "python-dotenv",
            "specs": [
                [
                    "==",
                    "1.0.1"
                ]
            ]
        },
        {
            "name": "pydantic",
            "specs": [
                [
                    "==",
                    "2.9.2"
                ]
            ]
        },
        {
            "name": "typing-extensions",
            "specs": [
                [
                    "==",
                    "4.12.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.7.0"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.12.0"
                ]
            ]
        }
    ],
    "lcname": "orion-data-analyst"
}
        
Elapsed time: 2.56942s