phm-algo-ias


Namephm-algo-ias JSON
Version 1.3.2 PyPI version JSON
download
home_pageNone
SummaryExample algo package with Cython-compiled submodules
upload_time2025-11-13 09:52:28
maintainerNone
docs_urlNone
authorYour Name
requires_python>=3.11
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 參數列表
|   | 演算法功能                         | 建模參數 |
|-----|-----------------------------------|---------------------------|
| 0   | DEMO                            | "0, 1, 1, 1, 1, 1, 1, 1" |
| 1-1   | 一般建模(TSMC)                            | "1, 0, 1, 3, 3, 1, 1, 1" |
| 1-2   | 一般建模(SDP、雲界)                      | "1, 0, 1, 1, 2, 1, 1, 1" |
| 2-1   | 快速建模-暫態(TSMC)                             | "1, 0, 1, 3, 3, 1, 1, 2" |
| 2-2   | 快速建模-穩態(TSMC)                             | "1, 0, 1, 3, 3, 1, 1, 3" |

# 參數意義
|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 1. 時間長度設定 | min | hour |  |  |  |
| 2. 測試資料群值處理 | close | open |  |  |  |
| 3. 低解析度特徵篩選 | close | open |  |  |  |
| 4. 特徵選擇 |  | Time, Frequency, fail mode | Time, Frequency | Frequency |  |
| 5. Scale |  | df_scaled = df | Standardize() | minmax() |  |
| 6. 模型 |  | PCA + T² |  |  |  |
| 7. rul_deadline |  | T² + 12 * σ(T²) → Score | Warning: T² + 24 * σ(T²) → Score<br>rul_deadline = 0 |  |  |
| 8. feature_extraction_setting |  | 每小時取特徵<br>小時不足1800筆則刪除 | 依資料進行rolling計算<br>Window = 120s<br>Step = 60s (暫態) | Rolling計算<br>Window = 3600s<br>Step = 1800s (穩態) |  |

# error_stage列表
|Training | error_stage                         | 程式步驟 |
|-----|-----------------------------------|---------------------------|
|    | Error_01                            | df 轉換成每秒一筆資料 |
|    | Error_02                            | 出廠設定參數 |
|    | Error_03                            | 前處理 |
|    | Error_04                            | 特徵分類/挑選 |
|    | Error_05                            | 低解析度特徵篩選 |
|    | Error_06                            | 特徵萃取 |
|    | Error_07                            | 資料正規化 |
|    | Error_08                            | 建模 |
|    | Error_09                            | RUL 計算 |

|Inference | error_stage                         | 程式步驟 |
|-----|-----------------------------------|---------------------------|
|    | Error_01                            | df 轉換成每秒一筆資料 |
|    | Error_02                            | 檢查資料筆數 (是否<301) |
|    | Error_03                            | 出廠設定參數 |
|    | Error_04                            | 前處理 |
|    | Error_05                            | 特徵萃取 |
|    | Error_06                            | 資料正規化 |
|    | Error_07                            | 計算 HI & T2 & 嫌疑度變量 |





            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "phm-algo-ias",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": "Your Name",
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "# \u53c3\u6578\u5217\u8868\n|   | \u6f14\u7b97\u6cd5\u529f\u80fd                         | \u5efa\u6a21\u53c3\u6578 |\n|-----|-----------------------------------|---------------------------|\n| 0   | DEMO                            | \"0, 1, 1, 1, 1, 1, 1, 1\" |\n| 1-1   | \u4e00\u822c\u5efa\u6a21(TSMC)                            | \"1, 0, 1, 3, 3, 1, 1, 1\" |\n| 1-2   | \u4e00\u822c\u5efa\u6a21(SDP\u3001\u96f2\u754c)                      | \"1, 0, 1, 1, 2, 1, 1, 1\" |\n| 2-1   | \u5feb\u901f\u5efa\u6a21-\u66ab\u614b(TSMC)                             | \"1, 0, 1, 3, 3, 1, 1, 2\" |\n| 2-2   | \u5feb\u901f\u5efa\u6a21-\u7a69\u614b(TSMC)                             | \"1, 0, 1, 3, 3, 1, 1, 3\" |\n\n# \u53c3\u6578\u610f\u7fa9\n|   | 0 | 1 | 2 | 3 | 4 |\n|---|---|---|---|---|---|\n| 1. \u6642\u9593\u9577\u5ea6\u8a2d\u5b9a | min | hour |  |  |  |\n| 2. \u6e2c\u8a66\u8cc7\u6599\u7fa4\u503c\u8655\u7406 | close | open |  |  |  |\n| 3. \u4f4e\u89e3\u6790\u5ea6\u7279\u5fb5\u7be9\u9078 | close | open |  |  |  |\n| 4. \u7279\u5fb5\u9078\u64c7 |  | Time, Frequency, fail mode | Time, Frequency | Frequency |  |\n| 5. Scale |  | df_scaled = df | Standardize() | minmax() |  |\n| 6. \u6a21\u578b |  | PCA + T\u00b2 |  |  |  |\n| 7. rul_deadline |  | T\u00b2 + 12 * \u03c3(T\u00b2) \u2192 Score | Warning: T\u00b2 + 24 * \u03c3(T\u00b2) \u2192 Score<br>rul_deadline = 0 |  |  |\n| 8. feature_extraction_setting |  | \u6bcf\u5c0f\u6642\u53d6\u7279\u5fb5<br>\u5c0f\u6642\u4e0d\u8db31800\u7b46\u5247\u522a\u9664 | \u4f9d\u8cc7\u6599\u9032\u884crolling\u8a08\u7b97<br>Window = 120s<br>Step = 60s (\u66ab\u614b) | Rolling\u8a08\u7b97<br>Window = 3600s<br>Step = 1800s (\u7a69\u614b) |  |\n\n# error_stage\u5217\u8868\n|Training | error_stage                         | \u7a0b\u5f0f\u6b65\u9a5f |\n|-----|-----------------------------------|---------------------------|\n|    | Error_01                            | df \u8f49\u63db\u6210\u6bcf\u79d2\u4e00\u7b46\u8cc7\u6599 |\n|    | Error_02                            | \u51fa\u5ee0\u8a2d\u5b9a\u53c3\u6578 |\n|    | Error_03                            | \u524d\u8655\u7406 |\n|    | Error_04                            | \u7279\u5fb5\u5206\u985e/\u6311\u9078 |\n|    | Error_05                            | \u4f4e\u89e3\u6790\u5ea6\u7279\u5fb5\u7be9\u9078 |\n|    | Error_06                            | \u7279\u5fb5\u8403\u53d6 |\n|    | Error_07                            | \u8cc7\u6599\u6b63\u898f\u5316 |\n|    | Error_08                            | \u5efa\u6a21 |\n|    | Error_09                            | RUL \u8a08\u7b97 |\n\n|Inference | error_stage                         | \u7a0b\u5f0f\u6b65\u9a5f |\n|-----|-----------------------------------|---------------------------|\n|    | Error_01                            | df \u8f49\u63db\u6210\u6bcf\u79d2\u4e00\u7b46\u8cc7\u6599 |\n|    | Error_02                            | \u6aa2\u67e5\u8cc7\u6599\u7b46\u6578 (\u662f\u5426<301) |\n|    | Error_03                            | \u51fa\u5ee0\u8a2d\u5b9a\u53c3\u6578 |\n|    | Error_04                            | \u524d\u8655\u7406 |\n|    | Error_05                            | \u7279\u5fb5\u8403\u53d6 |\n|    | Error_06                            | \u8cc7\u6599\u6b63\u898f\u5316 |\n|    | Error_07                            | \u8a08\u7b97 HI & T2 & \u5acc\u7591\u5ea6\u8b8a\u91cf |\n\n\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Example algo package with Cython-compiled submodules",
    "version": "1.3.2",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "49c9332c0cae7a30e49ff487d3e14f0d1f77a17ffddf35bb0b78366ee945e36e",
                "md5": "5e6fcf9ab7be595fc2eaae517f8a4eb2",
                "sha256": "3ccda3fea18e738d2f0b9c38dec1ed8a41d90f735f29c92420b536c4c23b73d2"
            },
            "downloads": -1,
            "filename": "phm_algo_ias-1.3.2-cp311-cp311-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "5e6fcf9ab7be595fc2eaae517f8a4eb2",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 343660,
            "upload_time": "2025-11-13T09:52:28",
            "upload_time_iso_8601": "2025-11-13T09:52:28.938778Z",
            "url": "https://files.pythonhosted.org/packages/49/c9/332c0cae7a30e49ff487d3e14f0d1f77a17ffddf35bb0b78366ee945e36e/phm_algo_ias-1.3.2-cp311-cp311-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a025e7d289c445692c1284e3b05af01b134471dc1f2dd9550550a91be0ecb8f0",
                "md5": "24d2e8795fd2a661048e6234114e022e",
                "sha256": "4b0ddb657e865471110707ee63260d006f48041ff57a4ed82ab4498e5f6903b4"
            },
            "downloads": -1,
            "filename": "phm_algo_ias-1.3.2-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "24d2e8795fd2a661048e6234114e022e",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 375496,
            "upload_time": "2025-11-13T09:52:30",
            "upload_time_iso_8601": "2025-11-13T09:52:30.607036Z",
            "url": "https://files.pythonhosted.org/packages/a0/25/e7d289c445692c1284e3b05af01b134471dc1f2dd9550550a91be0ecb8f0/phm_algo_ias-1.3.2-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0496dc78390bbe2f1891308934643f8e4dc2c2bc3ee6110761698d891e9e6f1a",
                "md5": "43677c7d416f71629e0776b39b8be6c7",
                "sha256": "ac6b1708da869d2f06a6916de7084b5b4e16198e532af386282a5581b33e63db"
            },
            "downloads": -1,
            "filename": "phm_algo_ias-1.3.2-cp311-cp311-musllinux_1_2_aarch64.whl",
            "has_sig": false,
            "md5_digest": "43677c7d416f71629e0776b39b8be6c7",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 344217,
            "upload_time": "2025-11-13T09:52:32",
            "upload_time_iso_8601": "2025-11-13T09:52:32.089752Z",
            "url": "https://files.pythonhosted.org/packages/04/96/dc78390bbe2f1891308934643f8e4dc2c2bc3ee6110761698d891e9e6f1a/phm_algo_ias-1.3.2-cp311-cp311-musllinux_1_2_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d9859aca57c8959fab1fe8d3117e286109f588f82412735ca4aac3a0fc3ac9a6",
                "md5": "157f87dea5f6513b9f92c1a3225e0a5f",
                "sha256": "64877fb8cc06e22c5b71af525598ba522599cc3d000c37a2f84f5f6f2d9f9e2a"
            },
            "downloads": -1,
            "filename": "phm_algo_ias-1.3.2-cp311-cp311-musllinux_1_2_x86_64.whl",
            "has_sig": false,
            "md5_digest": "157f87dea5f6513b9f92c1a3225e0a5f",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 378609,
            "upload_time": "2025-11-13T09:52:33",
            "upload_time_iso_8601": "2025-11-13T09:52:33.533597Z",
            "url": "https://files.pythonhosted.org/packages/d9/85/9aca57c8959fab1fe8d3117e286109f588f82412735ca4aac3a0fc3ac9a6/phm_algo_ias-1.3.2-cp311-cp311-musllinux_1_2_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "36891ed2853ebc5f47a78c3f4ea6c8bfd7e890c15bf22394cf3471f77551b8c5",
                "md5": "d98c2b9a6c3ff97437e84a357f82e816",
                "sha256": "41fc2652388b31a3afd375360accb193be4787fa0b2ab32ed59b6f7b58fe3b5b"
            },
            "downloads": -1,
            "filename": "phm_algo_ias-1.3.2-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "d98c2b9a6c3ff97437e84a357f82e816",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 221244,
            "upload_time": "2025-11-13T09:52:34",
            "upload_time_iso_8601": "2025-11-13T09:52:34.634202Z",
            "url": "https://files.pythonhosted.org/packages/36/89/1ed2853ebc5f47a78c3f4ea6c8bfd7e890c15bf22394cf3471f77551b8c5/phm_algo_ias-1.3.2-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-11-13 09:52:28",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "phm-algo-ias"
}
        
Elapsed time: 2.83427s